

RWS AMMUNITION _____ 4

RWS centrefire rifle cartridges 4 RWS rimfire cartridges 37 RWS air gun pellets 44

GECO AMMUNITION ______60

GECO centrefire rifle cartridges 60 GECO handgun ammunition 68 GECO shotshells 74 GECO rimfire cartridges 75 GECO air gun pellets 75

ROTTWEIL SHOTSHELLS ______ 76

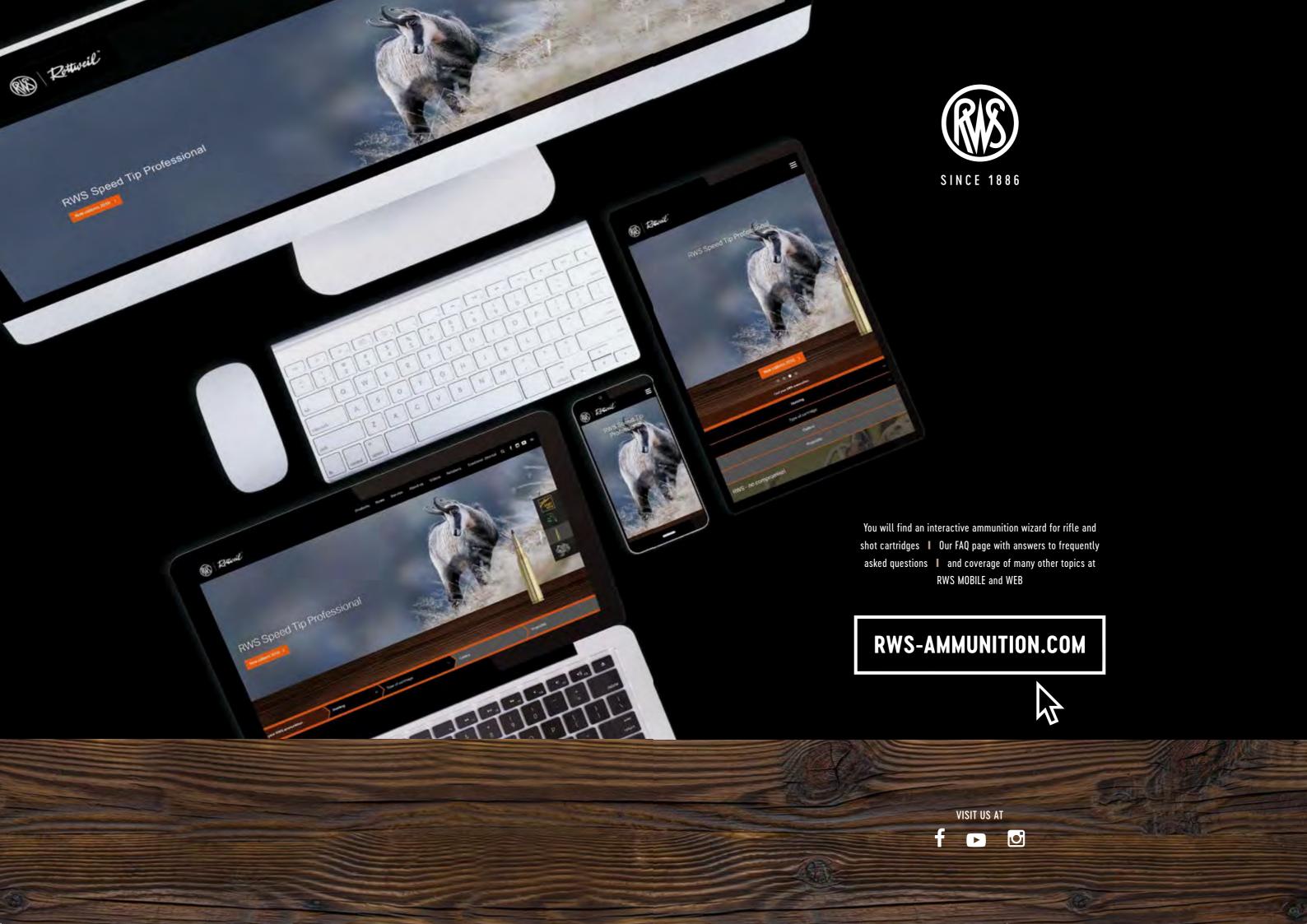
ROTTWEIL Professional Line 82 ROTTWEIL Basic Line 84 ROTTWEIL Game Edition 86 ROTTWEIL Extra Line 91 ROTTWEIL Steel Line 94 ROTTWEIL Competition Line 97

ROTTWEIL Premium Line 78

RELOADING COMPONENTS _____108

RWS primers 109
RWS rifle cartridge bullets and cases 110
GECO rifle cartridge bullets and GECO primers 113
ROTTWEIL lead shot 113
GECO pistol and revolver cartridge bullets and cases 114
RWS | ROTTWEIL powder 115

GECO OPTICS _____


GECO riflescopes and binoculars 118 GECO GOLD riflescopes and binoculars 122 GECO binocular RF 124 GECO BLACK riflescopes 125

SUBSIDIARIES AND DISTRIBUTORS

126

116

4 | AMMUNITION | RWS RWS | AMMUNITION | 5

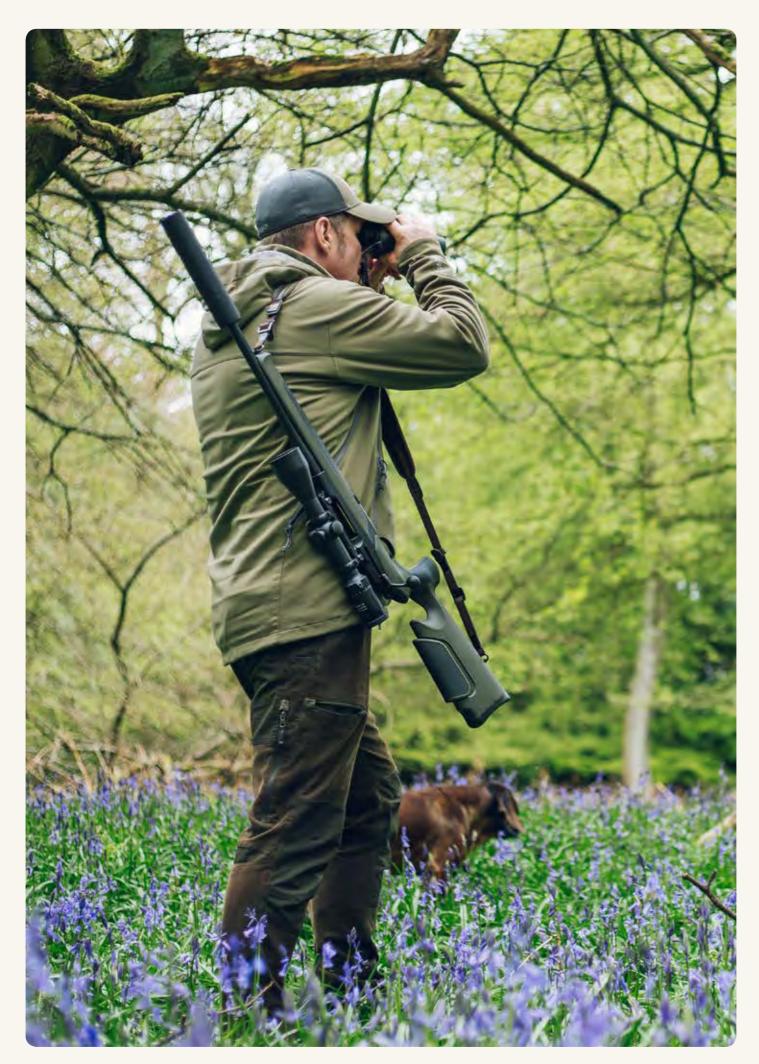
CENTREFIRE RIFLE CARTRIDGES

The ammunition counts

From the initial concept through the production process to the final visual inspection, RWS make no compromise on quality. All components go through repeated stringent quality checks before assembly. During production, all rifle cartridges are subject to multi-layered RWS - no compromise! laser measurement as well as further manual checks.

More then 100 production steps with an equal number of quality control checks are necessary before an RWS rifle cartridge is considered by us to be ready for use.

PRECISE


NON-CORROSIVE

EFFECTIVE

INNOVATIVE

RIFLE CARTRIDGE BULLETS

RWS are the only major manufacturer of rifle cartridges in the world who only offer expanding bullets of their own make. With more than nine different game bullet styles and numerous others for military, police, commercial and competition applications, RWS certainly have the widest range of bullets covering the whole shooting spectrum. Use of the most modern production methods ensure highest dimensional stability and a flawless surface texture. Only bullets that comply with the most demanding RWS specifications are found on gun dealers' shelves.

What in particular distinguishes the RWS bullets?

- extraordinary precision
- extended trajectory
- energy output in the game's body appropriate to the game's weight
- ready deformation commensurate with the shooting range
- short, if any, trailing distances

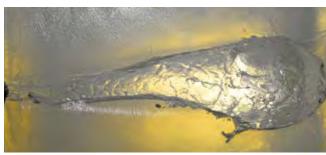
NEW

SPEED TIP PRO

Highest knock-down power at all distances

Rapid advancements in firearms and optical technologies make shooting and hunting at long ranges possible. As hunting tourism increases, so does the need for ammunition designed for hunting game animals at all ranges and of all weight

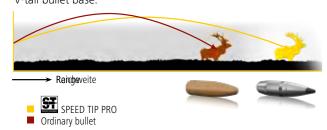
classes. For example, when mountain hunting or when after heavy African game, deep penetration and great stopping power are essential. RWS have developed a modern hunting bullet to meet these demands, the new SPEED TIP PRO. It is reliable and effective for game weights of all classes from close range to 300 metres and beyond. RWS SPEED TIP PROFESSIONAL, one of the latest developments from RWS, is specially developed for great shock effect and stopping power at the longest ranges.


Its advantages at a glance:

- Very high shock and stopping effect even at long shooting distances
- Extremely extended trajectory due to low air resistance
- Convincing precision
- Deep penetration

Extreme knock-down power even at long ranges

The very rapid expansion in the body of the game animal is achieved through the Speed-Tip bullet tip with its integral hollow point and easily fragmented front core. The harder rear core guarantees penetrating power. Whilst hunting, this results in greatly shortened flights and certain exit wounds with blood trails.



Simulated wound cavity in ballistic soap - .300 Win. Mag. SPEED TIP PRO at 350 m

SPEED TIP PRO Ordinary bullet LONG-RANGE PERFORMANCE Depth of penetration

Swift ballistics

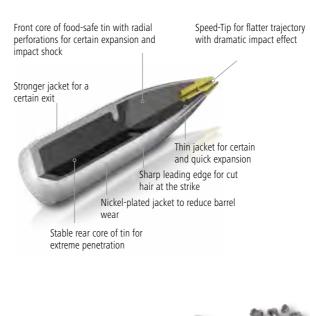
The high velocity and extremely flat trajectory make hunting possible even at long range. These ballistics are achieved through long-range streamlining, a Speed-Tip bullet tip and a V-tail bullet base.

High precision

A convincing prerequisite for distant shots: this is guaranteed by the V-tail base and nickel-plated jacket.

EVOLUTION GREEN

Outstanding shock effect - lead free



The RWS EVOLUTION GREEN is a partially fragmenting, lead-free bullet featuring a series of interdependent constructive details. The RWS EVOLUTION GREEN achieves its convincing performance with dual cores made

from food-safe tin and featuring a special pre-fragmentation of the frontal core. Working together with the Speed Tip point, this creates outstanding shocking power even at long ranges. This bullet is suitable for all ordinary game animals, but is ideal for use against light to medium game.

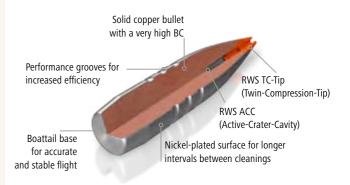
Its advantages at a glance:

- Outstanding impact behaviour and instantaneous shock effect for shorter runs after the shot and less tracking effort
- Convincing killing power even at longer ranges
- Extended range with high velocity and energy due to a high ballistic coefficient (BC)
- Stable rear section for a guaranteed exit wound
- · Sharp leading edge for cut hair at the strike

Witness the difference in expansion between the EVO GREEN and HIT lead-free bullets in our video, "RWS Ballistic Workshop": rws-ammunition.com → Videos → Hunting

HIT

Convincing penetration - lead-free

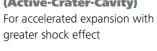


The RWS HIT is a lead-free expanding bullet with high weight retention due to its monolithic construction. The unique HIT Matrix with the RWS TC-Tip (Twin-Compression-Tip) and the RWS ACC (Active-Crater-Cavity) guar-

antees fast and certain expansion with great shocking power, even at long ranges. The compact slug, which retains 99% of its original weight, assures deep penetration and a certain exit wound - even after striking bone! This makes the RWS HIT the appropriate lead-free alternative for those favouring non-fragmenting bullets. This bullet is suitable for all ordinary game animals, but is ideal for use against medium to heavy game.

Its advantages at a glance:

- Compact slug assures deep penetration even after striking bone or for use against larger game
- Less wasted meat thanks to non-fragmenting expansion
- The top choice for long-range game shooting in highvelocity calibres
- Powerful shock effect even at longer ranges



RWS HIT-MATRIX

RWS TC-Tip (Twin-Compression-Tip) With 2 hollow cavities for flat

trajectory and reliable initial deformation

RYS

EVOLUTION

For convincing depth of penetration



The effectiveness of the Evolution® is especially clear when shooting through bones of the largest game animals. Whereas traditional semi-jacketed bullets fragment after hitting thick bone, leaving little energy left for pen-

etration and an exit wound, the Evolution® bullet retains most of its original mass. A special Power Bonding process fuses the lead core with the tombac jacket so that an almost 100% weight retention is achieved and thereby a high probability of an exit wound with attendant reduced waste of valuable venison. The Evolution® bullet is naturally accurate due to its aerodynamic geometry and base calotte. This results in a flat trajectory and high impact energy, even at longer ranges. The Evolution®, thanks to its favourable design advantages, expands reliably regardless of the game's size or it's distance from the shooter. Its outstanding penetration may be relied upon even when encountering heavier than normal game animals.

Its advantages at a glance:

- Powerful penetration, even through heavy bone!
- Less venison waste Power Bonding nearly eliminates fragmentation
- Aerodynamic bullet shape and ballistic calotte for outstanding accuracy
- Nickel-plated bullet jacket protects against barrel wear
- Rapid-X Tip® for quick yet controlled expansion

NEW

SPEED TIP

High effectiveness – even for long distance shots


From RWS, one of its latest developments is the RWS SPEED TIP which gives a very high shock effect, excellent stopping power and is also effective for long range shooting. The aerodynamically designed bullet with the new Speed

Tip and V-shaped tail ensures minimum air resistance, accuracy and effect even over long distances.

The high velocity and extremely far reaching flight trajectory enables hunting at long ranges. This achieved by the effective new bullet shape which gives an impressive BC value of 0.422 (cal. 30). The very fast response in the animal body is achieved by the Speed Tip bullet with an integrated hollow point and a highly reactive bullet casing. An excellent accuracy is essential for long range shots. This is guaranteed by the precision of the V-tail rear and by the nickel-plated bullet surface.

Its advantages at a glance:

- Very high shock and stopping effect even at long shooting distances
- Extremely extended trajectory due to low air resistance
- Convincing precision

For m please section

For more centrefire rifle cartridges, please see our listings in the GECO section of this catalogue.

UNI CLASSIC

For heavy game

The UNI Classic bullet complements the ID Classic bullet and has been developed especially for the taking of heavy ungulates and big game. The harder and heavier rear core has less of a tendency to expand which in

turn increases penetration. As with the ID Classic, the front core fragments reliably for a violent initial effect. The torpedo-shaped boattail assures stable flight characteristics.

Its advantages at a glance:

- UNIVERSAL for the heaviest game
- The front core fragments to deliver a quick burst of energy into the target
- The sharp leading edge cuts hair at the strike, making for easy trailing
- Harder rear core exhibits limited deformation to deliver the desired exit wound
- · Rear cannelure limits jacket fragmentation
- Little wasted meat

ID CLASSIC

For lighter game

The basic idea behind the ID Classic was to find an ideal combination of expansion as well as penetration into the target. This is achieved by joining two cores of differing hardness by the plug-and-socket method. The soft front core

fragments in a controlled manner and thus delivers its energy quickly into the game. The rear core of the ID Classic - in contrast to the UNI Classic - expands more starkly and is therefore especially suitable for light to medium game. The nickel-plated mild steel jacket protects the barrel and gradually thickens towards the rear to assure controlled expansion. The torpedoshaped boattail assures stable flight characteristics.

Its advantages at a glance:

- IDEAL for light and medium game
- Quick partial fragmentation for energetic impact
- An exit wound is the rule
- The sharp leading edge cuts hair at the strike, making for easy trailing
- Core lock to control deformation

Interactive product selector

Select the RWS cartridge most suited to your game of choice with the help of our interactive product selector. Find it on our website: rws-ammunition.com

→ Products → Hunting → Interactive product advisor

RIS

KEGELSPITZ KS

For best accuracy

Regardless whether the game is large or small, this bullet deforms in a controlled manner and gives an even distribution of energy into the animal. A slug with an effectively enlarged frontal area remains to carry through to a cer-

tain exit. The secret lies in the optimised ratio of the thickness of the jacket to the hardness of the core. The shape of the bullet provides great accuracy and reduced air resistance.

Its advantages at a glance:

- Uncommon accuracy due to its long bearing surface
- The deep cannelure at the rear of the bullet stops deformation and provides a compact slug with a high probability of making an exit
- Leaves few fragments behind in the tissue of the game

Ballistically optimised cone shape for flatter trajectory Deep cannelure core lock leaves a compact slug and a certain exit Tombac alloy jacket Lead core for balanced deformation even in different types of game Long bearing surface for best accuracy

H-MANTEL HMK

For best effect

The H-Mantel bullet is famous for its unique H-groove, a break-away constriction midway down the jacket mantle. It promotes the separation of the two bullet cores of differing hardness and is responsible for the dual action

of the bullet: The front section rapidly disintegrates at the strike, delivering a massive blow. The cylindrical rear section separates at the H-groove and passes through even large game without any noticeable deformation, reliably delivering the desired exit. The base drag of the rear section ensures that most of the front section's fragments are drawn out through the wound channel behind it.

Its advantages at a glance:

- A very effective bullet
- Controlled fragmentation thanks to the H-crimp constriction
- Cylindrical rear section ensures a certain exit
- Minimal meat loss

For more centrefire rifle cartridges, please see our listings in the GECO section of this catalogue.

Answers to the most frequent questions

Do you still have questions about our products? Please visit our FAQ site online at: rws-ammunition.com \longrightarrow Service \longrightarrow Hunting \longrightarrow FAQ

DOPPELKERN DK

For controlled deformation and shock effect

The Doppelkern bullet is made of two lead cores of differing hardness. The front core fragments reliably and assures an instantaneous effect. Controlling the process of deformation is a unique tombac capsule separat-

ing the hard rear core from the softer front core. Since both cores have the same weight, a perfect mix of violent impact and probability of exit is the result. This design produces a straight wound channel for the all-important exit.

Its advantages at a glance:

- Good and certain reaction to the shot
- Extremely short runs after the shot
- The sharp leading edge cuts hair at the strike, making for easy trailing
- Controlled and rapid impact for an instantaneous effect
- Certain exit guarantees an adequate blood trail
- Minimal meat loss

MATCH JAGD MJ

For training and competition

The MATCH JAGD bullet is especially suitable for training for a hunting licence and to use in the practical examination. It is not suitable for actual hunting!

FULL METAL JACKET VM

For deepest penetration

The Full Metal Jacket VM bullet is especially suitable for the taking of predators as well as black grouse. When shooting heavy game such as buffalo, it reliably penetrates heavy bones and flesh. The prerequisite for reliable

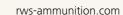
penetration is a closed point which is further reinforced in the larger calibres. Smaller calibre bullets have sharp points (VMS) whereas the larger calibres feature rounded tips (VMR).

SOFTPOINT TM

For great energy delivery

The Softpoint is a bullet type that has for decades been a proven performer and still has many admirers. Thanks to its proven design, this bullet delivers great energy into the game and has good stopping power. With rugged

round (TMR) or pointed (TMS) bullet tips.


Its advantages at a glance:

- Quickly deforms in both light as well as heavy game
- Great energy delivery
- Rugged nose for rough duty

WHICH IS THE BEST BULLET?

That is why there is no universal answer to the question. ,Which is demands with our comprehensive selection of loads and bullets for the best bullet'? The type of game, how it is taken, distance, calievery purpose. The following table lists some relevant properties bre, weapon and of course the sportsman's personal preference all of RWS game bullets to help you find the ideal one for your needs.

The fascination with the chase is that there is always something new. determine what the ,right' bullet should be like. RWS fulfil these

		Bullet type*	Escape distance	Penetration	Shock effect	Exit wound	Meat wastage
GEEN SO	FRAGMENTATION	PFRAG	very short	medium	very high	certain	varying
GREEN STATE OF THE PARTY OF THE	HÅT.	ЕХР	short	very deep	high	certain	very little
	PROFESSIONAL	PFRAG	very short	medium	very high	certain	varying
	EVOLUTION EVOLUTION	EXP	short	very deep	high	certain	very little
	ST. GESCHOSS	PFRAG	very short	medium	very high	as a rule	varying
	CLASSIC	PFRAG	very short	deep	very high	as a rule	varying
	CLASSIC	PFRAG	short	deep	high	certain	little
	DK ° GESCHOSS	PFRAG	very short	deep	very high	as a rule	little
	MANTEL	PFRAG	very short	medium	very high	certain	varying
	GESCHOSS .	PFRAG	short	deep	high	as a rule	little
	MANTEL	PFRAG	short	medium	high	as a rule	varying
	MANTEL		short	medium	medium	certain	very little

THE PRIMER SEAL

Cartridges of the same calibre may have bullets of the same design yet with different weights. RWS make it easy for you to tell them apart: Cartridges with heavier bullets have either a red or green primer sealant (see chart).

With cartridges of the same calibre: Lightest weight bullet: No primer seal Medium weight bullet: Green primer seal Heaviest weight bullet: Red primer seal

THE CALIBRE

To be certain that you have the correct calibre cartridge for your rifle, it is important to note the full calibre designation as well as any additional information. Taking the 7 x 64 as an example, the first numeral 7 indicates the approximate bullet diameter or the inner diameter of the rifle barrel in millimetres. The numeral 64 indicates the approximate length of the empty cartridge case in millimetres. In English-speaking countries, the calibre is most often designated in inches (1 in. = 25.4 mm) without any indication of the case length, Instead, some clue to the origin of the cartridge is included. For example, .30-06 signifies a calibre of 0.30 inches and the year of its introduction, 1906. Very often the name of the manufacturer who introduced the cartridge is added, e.g. 6.5 x 65 RWS or .30 R Blaser.

The special case of the 8 x 57 IS / 8 x 57 IRS

At this time, both the 8 x 57 IS and 8 x 57 IRS are loaded by RWS. For safety reasons, under no circumstances may either calibre be fired in barrels designated 8 x 57 I or 8 x 57 IR! To ensure that this may be avoided, 8 x 57 IS and 8 x 57 IRS loaded by RWS are identified by a black primer seal.

What does it take to produce an RWS rifle cartridge?

Learn more about the quality and precision of our rifle cartridges by visiting our website at: rws-ammunition.com → About us → Hunting → Research and Development

00	
Loads with red or green primer seals	Loads with no primer seal
5.6 x 50 Mag. TMS 4.1 g	5.6 x 50 R Mag. TMS 3.24 g
5.6 x 50 R Mag. TMS 4.1 g	
6.5 x 57 KS 8.2 g	
6.5 x 57 R KS 8.2 g	
7 x 57 R KS 10.5 g	
7 x 57 R ID Classic 11.5 g	
7 x 64 KS 10.5 g	7 x 64 KS 8.0 g
7 x 64 ID Classic 11.5 g	7 x 64 ID Classic 10.5 g
7 x 65 R KS 10.5 g	7 x 65 R KS 8.0 g
7 x 65 R ID Classic 11.5 g	7 x 65 R ID Classic 10.5 g
.30-06 KS 10.7 g (green)	.30-06 KS 9.7 g
.30-06 UNI Classic 11.7 g (green)	.30-06 ID Classic 9.7 g
.30-06 UNI Classic 13.0 g	

THE PACKAGING

the cartridge's external ballistics. So that you can have a handy reminder of your cartridge's ballistics in your pocket, RWS include this information on every box. A detachable fold-out attached to the back of the box has an illustration of that bullet and provides other useful information for the shooter.

To get the best field use from your rifle, it is necessary to know Our practical new cartridge carriers can, according to your needs, be reduced to an even handier format so that the rounds you carry on the hunt will not rattle in your pocket. To remove a cartridge, merely grasp the case at the shoulder and push it out of the carrier.

- Metric ballistic data for correct hold-offs or for use with bullet drop compensating and graduated scope reticules
- 2 Stages of bullet deformation or fragmentation illustrating how that bullet works upon impact
- **3** Bullet type
- **4** Bullet weight in grams and grains (1 gram = 15.43 grains)
- **6** Calibre designation
- **6** Imperial ballistic data in English
- The item number and the lot number (2 numerals and 2 letters) identify the production series of the cartridges packed in that
- **3 NEW**: Maximum effective range data and game size recommendations

BALLISTIC DATA

Data determination

The ballistic data found on RWS and GECO cartridge boxes are not absolute but median values derived from many measurements taken with firearms of various make. Those data can be heavily influenced by, for example, differing barrel lengths.

Firing tests of all cartridges are made and evaluated under identical conditions in our own facilities.

As a rule, these ballistic data are valid for level fire at sea level.

The trajectory

The barrel length is also given along with the cartridge data. This is usually 600 mm for RWS rifle cartridges. Should your barrel be slightly longer or shorter than this, then the velocity will increase or decrease. With high-performance cartridges, this value may vary by as much as 20 m/sec. It is taken as given that the scope sight

is mounted with its optical axis 5 cm above the bore axis. Positive values mean a bullet impact above the line of sight, negative values show impact below the line of sight.

The Recommended Zero Range - RZR

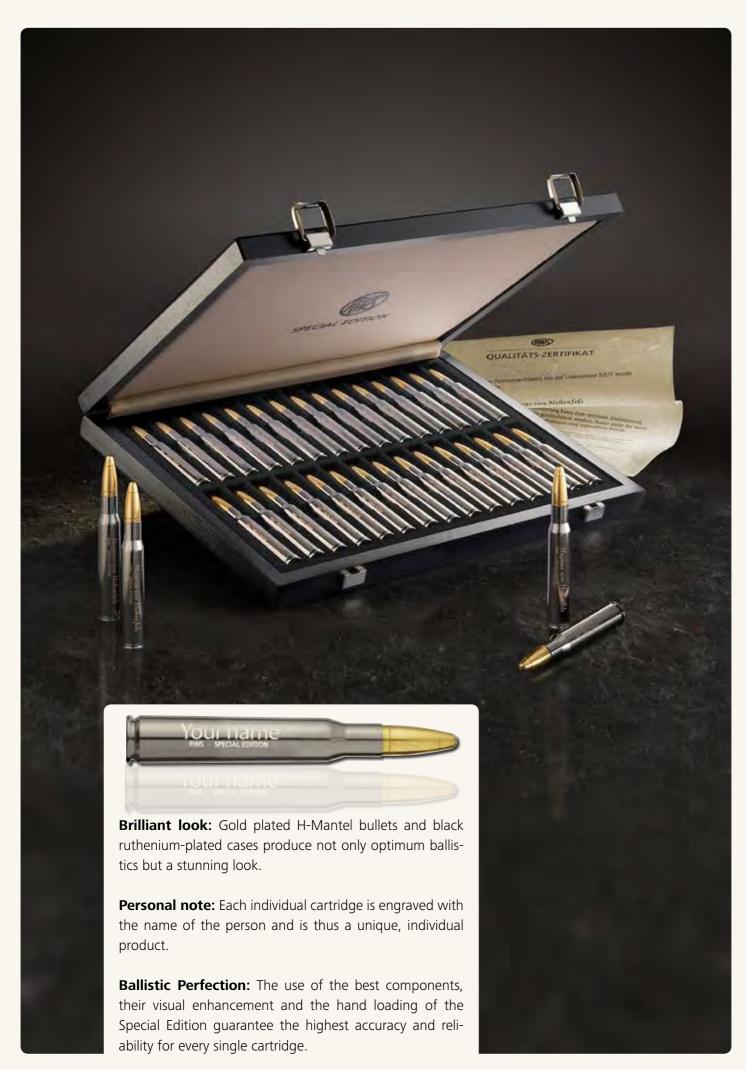
The RZR is that point where the bullet's path crosses the line of sight for the second time so that the bullet drops no more than 4 cm below the line of sight to give the maximum point-blank range. In the example below, an RZR of 182 m gives a maximum point-blank range of 209 m so that point of aim is the same up to 209 m. The rifle can still be zeroed at 100 m. In a 7 x 64, for example, setting the point of impact to 4 cm high at 100 m means that no change in point of aim is necessary up to the maximum point-blank range of 209 m.

The RWS sighting-in target is optimal for this use and can be downloaded from our website rwsammunition.com. RWS is well known for the fact that points of impact hardly change from lot to lot. Still, it is necessary to take a few control shots to be sure that nothing has changed when switching ammunition lot numbers.

How to interpret the tables

Every bullet is slowed down by air resistance. The rate of braking depends upon the shape, mass and velocity of the bullet as well as the air density. The ballistic coefficient (BC) describes the bullet's influence on this resistance and is thereby a measure of how readily the bullet is braked by wind resistance or, in other words, the ability of the projectile to overcome air resistance.

The velocity V is given in metres per second (m/sec) for the distances of 0, 50, 100, 200, 250 and 300 metres. The value V_o is that of the bullet velocity as it leaves the muzzle of the rifle. The kinetic energy of a bullet is based upon its velocity and its weight. Energy values are given in Joules (J) for ranges between 0 and 300 m. The value E₁₀₀ shows the amount of energy delivered to a game animal


100 metres distant from the muzzle. In Germany, for example, roe deer must be taken with a cartridge that has an E_{100} of at least 1000 Joules. All other big game must be taken with a calibre of at least 6.5 mm and which develops an E_{100} of at least 2000 Joules.

You can download the RWS sighting-in-target from our website rws-ammunition.com --Hunting → Service → Testing target

RWS | AMMUNITION | 19 18 | AMMUNITION | **RWS**

SPECIAL EDITION

A very personal masterpiece

hunting calibres, is a true rarity. Each individual com- cartridge. Even the look of the Special Edition is a masponent - from primer to case to powder to bullet - has terpiece. The legendary RWS H-Mantel bullets are goldbeen carefully selected, tested, refined, and finally plated with luxuriant black, ruthenium-plated cartridge loaded by hand with meticulous precision. The care- cases engraved with the name of the person, making ful optimized matching of the components ensures the this range of cartridges into a personal masterpiece.

This exclusive special series, available in four classic highest accuracy and performance of each and every

Bullet litem No.																				
HMK 11.7 600 V [m/sec] 795 754 714 675 638 602 567 ⊕ 100 m -0.3 ⊕ -4.5 -14.4 -30.3 -53.0 30 23152 28 180		g	length		0m	50m	100m	150m	200m	250m	300m			0m 100m				n 300i		
231 52 28 180	.308 Win	-																		
.30-06 HMK	нмк	11.7	600	V [m/sec]	795	754	714	675	638	602	567	\oplus	100 m	-0.3	\oplus	-4.5	-14.4	-30.3	-53.0	30
HMK 11.7 600 V [m/sec] 856 813 771 731 692 654 617 ⊕ 100 m -0.6 ⊕ -3.5 -11.6 -24.8 -43.7 30 231 52 29 180 E [J] 4287 3867 3477 3126 2801 2502 2227 RZR 176 m 1.4 4.0 2.5 -3.5 -14.7 -31.7 300 Win. Mag. HMK 11.7 650 V [m/sec] 955 909 864 821 779 738 699 ⊕ 100 m -1.0 ⊕ -2.3 -8.2 -18.2 -32.6 30 231 62 30 180 E [J] 5335 4834 4367 3943 3550 3186 2858 RZR 197 m 1.0 4.0 3.7 -0.3 -8.3 -20.8 8 x 57 JRS HMK 12.1 600 V [m/sec] 785 740 697 656 616 577 540 ⊕ 100 m -0.3 ⊕ -4.8 -15.3 -32.3 -56.7 30	231 52 28	180		E [J]	3697	3326	2982	2665	2381	2120	1881	RZR	163 m	1.7	4.0	1.5	-6.3	-20.2	-40.9	
231 52 29 180 E [J] 4287 3867 3477 3126 2801 2502 2227 RZR 176 m 1.4 4.0 2.5 -3.5 -14.7 -31.7 300 Win. Mag. HMK 11.7 650 V [m/sec] 955 909 864 821 779 738 699 ⊕ 100 m -1.0 ⊕ -2.3 -8.2 -18.2 -32.6 30 231 62 30 180 E [J] 5335 4834 4367 3943 3550 3186 2858 RZR 197 m 1.0 4.0 3.7 -0.3 -8.3 -20.8 8 x 57 JRS HMK 12.1 600 V [m/sec] 785 740 697 656 616 577 540 ⊕ 100 m -0.3 ⊕ -4.8 -15.3 -32.3 -56.7 30	.30-06																			
.300 Win. Mag. HMK 11.7 650 V [m/sec] 955 909 864 821 779 738 699 ⊕ 100 m -1.0 ⊕ -2.3 -8.2 -18.2 -32.6 30 231 62 30 180 E [J] 5335 4834 4367 3943 3550 3186 2858 RZR 197 m 1.0 4.0 3.7 -0.3 -8.3 -20.8 8 x 57 JRS HMK 12.1 600 V [m/sec] 785 740 697 656 616 577 540 ⊕ 100 m -0.3 ⊕ -4.8 -15.3 -32.3 -56.7 30	нмк	11.7	600	V [m/sec]	856	813	771	731	692	654	617	\oplus	100 m	-0.6	\oplus	-3.5	-11.6	-24.8	-43.7	30
HMK 11.7 650 V [m/sec] 955 909 864 821 779 738 699 ⊕ 100 m -1.0 ⊕ -2.3 -8.2 -18.2 -32.6 30 231 62 30 180 E [J] 5335 4834 4367 3943 3550 3186 2858 RZR 197 m 1.0 4.0 3.7 -0.3 -8.3 -20.8 8 x 57 JRS HMK 12.1 600 V [m/sec] 785 740 697 656 616 577 540 ⊕ 100 m -0.3 ⊕ -4.8 -15.3 -32.3 -56.7 30	231 52 29	180		E [J]	4287	3867	3477	3126	2801	2502	2227	RZR	176 m	1.4	4.0	2.5	-3.5	-14.7	-31.7	
HMK 11.7 650 V [m/sec] 955 909 864 821 779 738 699 ⊕ 100 m -1.0 ⊕ -2.3 -8.2 -18.2 -32.6 30 231 62 30 180 E [J] 5335 4834 4367 3943 3550 3186 2858 RZR 197 m 1.0 4.0 3.7 -0.3 -8.3 -20.8 8 x 57 JRS HMK 12.1 600 V [m/sec] 785 740 697 656 616 577 540 ⊕ 100 m -0.3 ⊕ -4.8 -15.3 -32.3 -56.7 30	.300 Win	. Mag	J.																	
8 x 57 JRS HMK 12.1 600 V [m/sec] 785 740 697 656 616 577 540 ⊕ 100 m -0.3 ⊕ -4.8 -15.3 -32.3 -56.7 30		11.7	650	V [m/sec]	955	909	864	821	779	738	699	\oplus	100 m	-1.0	\oplus	-2.3	-8.2	-18.2	-32.6	30
HMK 12.1 600 V [m/sec] 785 740 697 656 616 577 540 ⊕ 100 m -0.3 ⊕ -4.8 -15.3 -32.3 -56.7 30	231 62 30	180		E [J]	5335	4834	4367	3943	3550	3186	2858	RZR	197 m	1.0	4.0	3.7	-0.3	-8.3	-20.8	
	8 x 57 JR	S																		
231 52 42 187 E [J] 3728 3313 2939 2604 2296 2014 1764 RZR 160 m 1.8 4.0 1.3 -7.2 -22.2 -44.6	нмк	12.1	600	V [m/sec]	785	740	697	656	616	577	540	\oplus	100 m	-0.3	\oplus	-4.8	-15.3	-32.3	-56.7	30
	231 52 42	187		E [J]	3728	3313	2939	2604	2296	2014	1764	RZR	160 m	1.8	4.0	1.3	-7.2	-22.2	-44.6	

1) V = Velocity, E = Energy 2) RZR = Recommended Zero Range

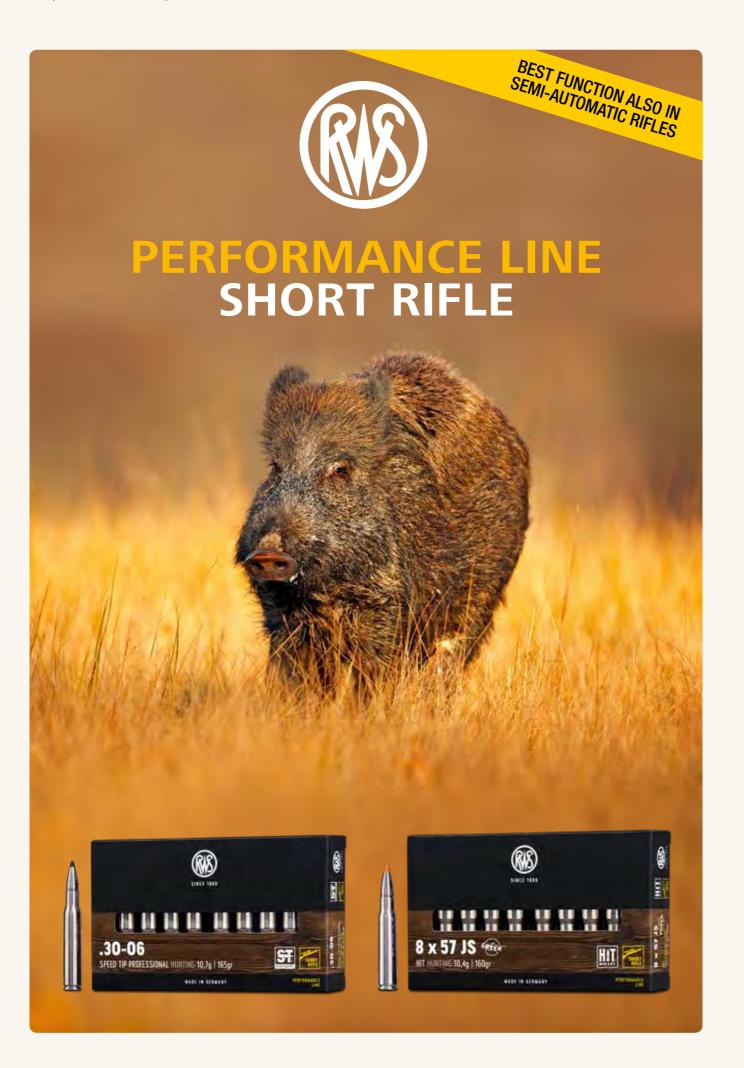
PERFORMANCE TEST PACK

Out of Four, One. Find the optimal ammunition for your rifle with the new RWS Performance Test Pack! The Test Pack contains 4x5 RWS rifle cartridges loaded with four different special-purpose bullets, and a test target.

has the ability to find the best load for his rifle by using the RWS included with the Test Pack has four differently coloured bullseyes - one for each of the loads - that are numbered to preclude confusion later. The test target also has instructions to help the shooter RWS Performance Test Pack - Connect four! determine which load performs best.

RWS promises maximum accuracy.

The Performance Test Pack is available in calibres .308 Win., .30-06, .300 Win. Mag., 8x57 JS and 9.3x62, all with both lead-core and lead-free bullets. The most important features as well as the unique When purchasing a new rifle or looking for a new load, the hunter properties of each bullet are provided on the outside of the packaging. The shooter receives not only a set of targets to determine Performance Test Pack and its four test bullseyes. The test target the best load for his rifle, but also information on other important criteria such as shocking power and meat damage.

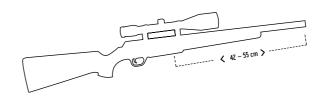


			GREEN	GREEN		
Calibre Item No.	Ctg/ box	EVOLUTION	HAT	FRAGMENTATION	CLASSIC	CLASSIC
.308 Win.						
231 92 77	20	EVO 11.9g	HIT 10.7g	EVO GREEN 8.8g	UNI Classic 11.7g	
.30-06						
231 92 76	20	EVO 11.9g	HIT 10.7g	EVO GREEN 8.8g	UNI Classic 11.7g	
.300 Win. Mag.						
231 92 80	20	EVO 11.9g	HIT 10.7g	EVO GREEN 8.8g	UNI Classic 11.7g	
8x57 JS						
231 92 81	20	EVO 13.0g	HIT 10.4g	EVO GREEN 9.0g		ID Classic 12.8g
9.3x62						
231 92 82	20	EVO 18.8g	HIT 16.2g	EVO GREEN 11.9g	UNI Classic 19.0g	

The ballistic data for the various loadings can be found in the tables starting on page 24.

NEW

SHORT RIFLE

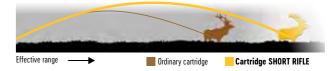

Full performance from short barrels

More and more hunters have come to appreciate the advantages of a short and handy barrel. This trend is fueled by the increased use of silencers, especially with the .308 Winchester calibre. Standard ammunition is formulated for use in the most commonly encountered barrel length of 60 cm. Firing standard ammunition out of 42-55 cm barrels has several disadvantages: Loss of velocity and energy,

reduced effective range, dazzling muzzle flash, increased muzzle blast and accelerated silencer wear. That is why RWS has developed a cartridge tailored specifically for use in short-barreled rifles. This means that shooting a short-barreled rifle no longer means giving up long-barrel performance.

Optimized for short barrels

The new RWS load is specially formulated for 42 to 55 cm barrels with a fast-burning powder, an appropriate bullet weight and a high-performance primer.



Reduced muzzle flash

Our fast-burning powder significantly reduces both muzzle flash and report in shorter barrels. Now you can keep sight of the target at the instant the shot is fired, which is especially important when hunting in twilight or darkness.

Full velocity and energy

Thanks to its special formulation, the new RWS cartridge delivers full velocity and energy – even from short barrels. This means that you need not change your hunting tactics when it comes to a short barrel and that you can expect full gametaking power, even at long ranges.

The best choice when shooting with silencers

Short barrels are the first choice for use with a silencer. The complete combustion of this fast-burning powder within the barrel itself not only assures a significantly higher life expectancy for the silencer but also promotes tighter groups.

	Item No.	Veight g ır	Barrel length/ mm BC-Wert 1)		0m	50m	100m	150m	200m	250m	300m	⊕ RZR 3)	50m	100m		200m ctory (cm)		300m	Ctg/box	
CEN	.308 Wi	n.																			
GREET	HIT	9.7	500	V [m/sec]	870	830	791	753	716	680	646	\oplus	100 m	-0.7	\oplus	-3.2	-10.7	-23.1	-40.7	20	SHORT RIFLE
NEW	240 66 15	150	0.386	E[J]	3671	3341	3035	2750	2486	2243	2024	RZR	180 m	1.3	4.0	2.8	-2.7	-13.0	-28.7		
NEW	SPEED TIP PRO	10.7	500	V [m/sec]	830	794	760	726	693	661	630	\oplus	100 m	-0.6	\oplus	-3.7	-12.0	-25.5	-44.6	20	SHORT RIFLE
	240 66 16	165	0.421	E[J]	3686	3373	3090	2820	2569	2338	2123	RZR	173 m	1.5	4.0	2.3	-4.0	-15.5	-32.5		
- CA	.30-06																				
GREEN	HIT	10.7	500	V [m/sec]	840	804	769	734	701	668	636	\oplus	100 m	-0.6	\oplus	-3.6	-11.7	-24.8	-43.4	20	SHORT
NEW	240 84 72	165	0.420	E[J]	3775	3458	3164	2882	2629	2387	2164	RZR	173 m	1.3	3.9	2.3	-3.9	-15.0	-31.7		
NEW	SPEED TIP PRO	10.7	500	V [m/sec]	870	832	795	758	723	689	655	\oplus	100 m	-0.7	\oplus	-3.2	-10.6	-22.7	-40.0	20	SHORT
	240 84 73	165	0.405	E[J]	4049	3703	3381	3074	2797	2540	2295	RZR	179 m	1.2	3.9	2.7	-2.8	-13.0	-28.3		
Andrea Grace and	.300 Wi	n. N	lag.																		
GREEN	HIT	10.7	500	V [m/sec]	950	911	873	836	800	765	731	\oplus	100 m	-1.0	\oplus	-2.2	-7.9	-17.5	-31.2	20	SHORT
NEW	240 84 74	165	0.420	E[J]	4828	4440	4077	3739	3424	3131	2859	RZR	199 m	0.9	3.9	3.7	-0.1	-7.7	-19.4		KIFLE
NEW	SPEED TIP PRO	10.7	500	V [m/sec]	980	939	898	859	821	785	749	\oplus	100 m	-1.1	\oplus	-1.9	-7.2	-16.1	-29.0	20	SHORT
	240 86 34	165	0.405	E[J]	5138	4717	4314	3948	3606	3297	3001	RZR	206 m	0.9	3.9	4.0	0.7	-6.3	-17.2		RIFLE
alle Gescha	8 x 57 J	S																			
GREEN	HIT	10.4	500	V [m/sec]	835	791	748	708	670	632	596	\oplus	100 m	-0.5	\oplus	-3.9	-12.6	-26.8	-47.2	20	SHORT
NEW	240 84 75	160	0.338	E[J]	3615	3244	2901	2599	2328	2071	1842	RZR	169 m	1.4	3.9	2.0	-4.8	-17.1	-35.5		RIFLE
and Generalized	9.3 x 62																				
GREEN	ніт	16.2	500	V [m/sec]	770	734	698	665	633	601	571	\oplus	100 m	-0.2	\oplus	-4.8	-15.2	-31.7	-55.0	20	SHORT
NEW	240 84 76	250	0.395	E[J]	4804	4365	3948	3583	3247	2927	2642	RZR	159 m	1.8	3.9	1.1	-7.3	-21.8	-43.1		RIFLE

25

Bullet Item No.	Weight g gr	Barrel length/ mm BC-Value ¹⁾	V ²⁾	0m	50m	100m	150m	200m	250m	300m	⊕ RZR *	- 3)	50m	100m	150m Trajecto	200m ory (cm)	250m	300m	Ctg/ box
	,			•							.22	2 H	orn	et					
	-										_								
MJ	3.0	600	V[m/sec]	690	596	511	436	376	332	303	⊕ p.7p	100 m	1.0	⊕	-10.5	-34.0	-75.0	-137.9	50
211 63 67	46	0.140	E[J]	714	533	392	285	212	165	138	RZR	130 m	3.0	3.9	-4.6	-26.2	-65.1	-126.0	20
TMS 211 63 75	3.0 46	600 0.152	V[m/sec] E[J]	700 735	613 564	532 425	460 317	399 239	351 185	319 153	⊕ RZR	100 m	0.8	4.0	-9.6 -3.6	-30.8 -22.8	-67.7 -57.7	-124.4 -112.4	20
211 03 73	40	0.132	ב[ו]	/33	504	423	317	239	100	155	NΔN	133 111	2.0	4.0	-3.0	-22.0	-57.7	-112.4	
1		-	-								.22	22 F	Ren	n_					
_																			
TMS	3.24	600	V[m/sec]	1020	929	843	763	687	616	550	\oplus	100 m	-1.1	\oplus	-2.4	-9.0	-20.9	-39.3	20
211 64 05	50	0.186	E[J]	1685	1398	1151	943	765	615	490	RZR	191 m	0.9	4.0	3.6	-1.0	-10.9	-27.3	
MJ	3.4	600	V[m/sec]	980	890	806	726	652	582	517	\oplus	100 m	-0.9	\oplus	-2.9	-10.4	-23.7	-44.4	30
231 91 46	52	0.183	E[J]	1633	1347	1104	896	723	576	454	RZR	182 m	1.0	4.0	3.1	-2.4	-13.8	-32.5	
1				1000							25		30	-					
		_									. 2 4	23 F	ten	m.					
TMS	3.6	600	V[m/sec]	1000	919	842	770	702	637	575	\oplus	100 m	-1.0	⊕	-2.4	-9.0	-20.6	-38.3	20
211 64 72	55	0.207	E[J]	1800	1520	1276	1067	887	730	595	RZR	191 m	1.0	4.0	3.6	-1.0	-10.6	-26.3	
												_							
	_				-						5.6	X	50	Ma	gn	um			
TMS	4.1	600	V[m/sec]	920	854	791	730	673	618	566	\oplus	100 m	-0.8	⊕	-3.1	-10.9	-24.0	-43.7	20
211 64 99	63	0.240	E[J]	1735	1495	1283	1092	929	783	657	RZR	179 m	1.2	4.0	2.8	-2.9	-14.1	-31.8	
	_																		
			-																
-											5.6	5 X	50	RI	Лag	jnu	m		
	2.24	500	Marteral	1015	024	220	750	602	642									20.0	20
	3.24	600	V[m/sec]		924	839	759	683	613	546	⊕	100 m	-1.1	\oplus	-2.4	-9.2	-21.2	-39.8	20
TMS 211 68 47	50	0.186	E[J]	1669	1383	1140	933	756	609	546 483	⊕ RZR	100 m 190 m	-1.1 0.9	⊕ 4.0	-2.4 3.6	-9. <u>2</u> -1.2	-21.2 -11.2	-27.8	
211 68 47 TMS	50 4.1	0.186 600	E[J] V[m/sec]	1669 900	1383 835	1140 772	933 713	756 656	609 602	546 483 551	⊕ RZR ⊕	100 m 190 m 100 m	-1.1 0.9 -0.7	⊕ 4.0 ⊕	-2.4 3.6 -3.4	-9.2 -1.2 -11.6	-21.2 -11.2 -25.6	-27.8 -46.4	20
	50	0.186	E[J] V[m/sec]	1669 900	1383	1140 772	933 713	756 656	609	546 483 551	⊕ RZR ⊕	100 m 190 m	-1.1 0.9 -0.7	⊕ 4.0 ⊕	-2.4 3.6	-9.2 -1.2 -11.6	-21.2 -11.2	-27.8 -46.4	
211 68 47 TMS	50 4.1	0.186 600	E[J] V[m/sec]	1669 900	1383 835	1140 772	933 713	756 656	609 602	546 483 551 622	⊕ RZR ⊕ RZR	100 m 190 m 100 m 175 m	-1.1 0.9 -0.7 1.3	⊕ 4.0 ⊕ 4.0	-2.4 3.6 -3.4	-9.2 -1.2 -11.6	-21.2 -11.2 -25.6	-27.8 -46.4	
211 68 47 TMS	50 4.1	0.186 600	E[J] V[m/sec]	1669 900	1383 835	1140 772	933 713	756 656	609 602	546 483 551 622	⊕ RZR ⊕ RZR	100 m 190 m 100 m	-1.1 0.9 -0.7 1.3	⊕ 4.0 ⊕ 4.0	-2.4 3.6 -3.4	-9.2 -1.2 -11.6	-21.2 -11.2 -25.6	-27.8 -46.4	
211 68 47 TMS 211 65 02	50 4.1	0.186 600	E[J] V[m/sec]	1669 900	1383 835	1140 772	933 713	756 656	609 602	546 483 551 622	⊕ RZR ⊕ RZR	100 m 190 m 100 m 175 m	-1.1 0.9 -0.7 1.3	⊕ 4.0 ⊕ 4.0	-2.4 3.6 -3.4	-9.2 -1.2 -11.6	-21.2 -11.2 -25.6	-27.8 -46.4	
211 68 47 TMS	50 4.1 63	0.186 600 0.240	E[J] V[m/sec] E[J]	1669 900 1661	1383 835 1429	1140 772 1222	933 713 1042	756 656 882	609 602 743	546 483 551 622	⊕ RZR ⊕ RZR ⊕ FZR	100 m 190 m 100 m 175 m	-1.1 0.9 -0.7 1.3	⊕ 4.0 ⊕ 4.0	-2.4 3.6 -3.4 2.6	-9.2 -1.2 -11.6 -3.7	-21.2 -11.2 -25.6 -15.7	-27.8 -46.4 -34.5	20
211 68 47 TMS 211 65 02 TMS	50 4.1 63 4.6	0.186 600 0.240	E[J] V[m/sec] E[J] V[m/sec]	1669 900 1661 870	1383 835 1429	1140 772 1222 749	933 713 1042 692	756 656 882	609 602 743	546 483 551 622 538 666	⊕ RZR ⊕ RZR ⊕ RZR	100 m 190 m 100 m 175 m 5 X 100 m	-1.1 0.9 -0.7 1.3 52 -0.6 1.4	⊕ 4.0 ⊕ 4.0 R ⊕	-2.4 3.6 -3.4 2.6	-9.2 -1.2 -11.6 -3.7	-21.2 -11.2 -25.6 -15.7	-27.8 -46.4 -34.5	20
211 68 47 TMS 211 65 02 TMS	50 4.1 63 4.6	0.186 600 0.240	E[J] V[m/sec] E[J] V[m/sec]	1669 900 1661 870	1383 835 1429	1140 772 1222 749	933 713 1042 692	756 656 882	609 602 743	546 483 551 622 538 666	⊕ RZR ⊕ RZR ⊕ RZR	100 m 190 m 100 m 175 m	-1.1 0.9 -0.7 1.3 52 -0.6 1.4	⊕ 4.0 ⊕ 4.0 R ⊕	-2.4 3.6 -3.4 2.6	-9.2 -1.2 -11.6 -3.7	-21.2 -11.2 -25.6 -15.7	-27.8 -46.4 -34.5	20
211 68 47 TMS 211 65 02 TMS 211 68 63	50 4.1 63 4.6 71	0.186 600 0.240 600 0.248	E[J] V[m/sec] E[J] V[m/sec]	1669 900 1661 870 1741	1383 835 1429 808 1502	1140 772 1222 749 1290	933 713 1042 692 1101	756 656 882 638 936	609 602 743 587 793	546 483 551 622 538 666	⊕ RZR ⊕ RZR	100 m 190 m 100 m 175 m 5 X 100 m 170 m	-1.1 0.9 -0.7 1.3 52 -0.6 1.4	⊕ 4.0 ⊕ 4.0 R ⊕ 4.0	-2.4 3.6 -3.4 2.6	-9.2 -1.2 -11.6 -3.7 -12.7 -4.7	-21.2 -11.2 -25.6 -15.7 -27.7 -17.7	-27.8 -46.4 -34.5 -49.8 -37.8	20
211 68 47 TMS 211 65 02 TMS 211 68 63	50 4.1 63 4.6 71	0.186 600 0.240 600 0.248	E[J] V[m/sec] E[J] V[m/sec] V[m/sec]	1669 900 1661 870 1741	1383 835 1429 808 1502	1140 772 1222 749 1290	933 713 1042 692 1101	756 656 882 638 936	609 602 743 587 793	546 483 551 622 538 666	⊕ RZR ⊕ RZR ⊕ RZR 5.6 ⊕ RZR	100 m 190 m 100 m 175 m 100 m 175 m	-1.1 0.9 -0.7 1.3 52 -0.6 1.4	⊕ 4.0 ⊕ 4.0 R ⊕ 4.0 ⊕	-2.4 3.6 -3.4 2.6	-9.2 -1.2 -11.6 -3.7 -12.7 -4.7	-21.2 -11.2 -25.6 -15.7 -27.7 -17.7	-27.8 -46.4 -34.5 -49.8 -37.8	20
211 68 47 TMS 211 65 02 TMS 211 68 63	50 4.1 63 4.6 71	0.186 600 0.240 600 0.248	E[J] V[m/sec] E[J] V[m/sec]	1669 900 1661 870 1741	1383 835 1429 808 1502	1140 772 1222 749 1290	933 713 1042 692 1101	756 656 882 638 936	609 602 743 587 793	546 483 551 622 538 666	⊕ RZR ⊕ RZR ⊕ RZR 5.6 ⊕ RZR	100 m 190 m 100 m 175 m 5 X 100 m 170 m	-1.1 0.9 -0.7 1.3 52 -0.6 1.4	⊕ 4.0 ⊕ 4.0 R ⊕ 4.0	-2.4 3.6 -3.4 2.6	-9.2 -1.2 -11.6 -3.7 -12.7 -4.7	-21.2 -11.2 -25.6 -15.7 -27.7 -17.7	-27.8 -46.4 -34.5 -49.8 -37.8	20
211 68 47 TMS 211 65 02 TMS 211 68 63	50 4.1 63 4.6 71	0.186 600 0.240 600 0.248	E[J] V[m/sec] E[J] V[m/sec] V[m/sec]	1669 900 1661 870 1741	1383 835 1429 808 1502	1140 772 1222 749 1290	933 713 1042 692 1101	756 656 882 638 936	609 602 743 587 793	546 483 551 622 538 666	⊕ RZR ⊕ RZR 5.60 RZR RZR	100 m 190 m 100 m 175 m 100 m 175 m 100 m 170 m 170 m	-1.1 0.9 -0.7 1.3 52 -0.6 1.4 57 -1.2 0.8	⊕ 4.0 ⊕ 4.0 R ⊕ 4.0 ⊕ 4.0	-2.4 3.6 -3.4 2.6	-9.2 -1.2 -11.6 -3.7 -12.7 -4.7	-21.2 -11.2 -25.6 -15.7 -27.7 -17.7	-27.8 -46.4 -34.5 -49.8 -37.8	20
211 68 47 TMS 211 65 02 TMS 211 68 63	50 4.1 63 4.6 71	0.186 600 0.240 600 0.248	E[J] V[m/sec] E[J] V[m/sec] V[m/sec]	1669 900 1661 870 1741	1383 835 1429 808 1502	1140 772 1222 749 1290	933 713 1042 692 1101	756 656 882 638 936	609 602 743 587 793	546 483 551 622 538 666	⊕ RZR ⊕ RZR 5.60 RZR RZR	100 m 190 m 100 m 175 m 100 m 175 m	-1.1 0.9 -0.7 1.3 52 -0.6 1.4 57 -1.2 0.8	⊕ 4.0 ⊕ 4.0 R ⊕ 4.0 ⊕ 4.0	-2.4 3.6 -3.4 2.6	-9.2 -1.2 -11.6 -3.7 -12.7 -4.7	-21.2 -11.2 -25.6 -15.7 -27.7 -17.7	-27.8 -46.4 -34.5 -49.8 -37.8	20
211 68 47 TMS 211 65 02 TMS 211 68 63 KS	50 4.1 63 4.6 71	0.186 600 0.240 600 0.248	E[J] V[m/sec] E[J] V[m/sec] E[J]	1669 900 1661 870 1741	1383 835 1429 808 1502	1140 772 1222 749 1290	933 713 1042 692 1101	756 656 882 638 936	609 602 743 587 793	546 483 551 622 538 666	⊕ RZR ⊕ RZR 5.60 RZR RZR	100 m 190 m 100 m 175 m 100 m 175 m 100 m 170 m 170 m	-1.1 0.9 -0.7 1.3 52 -0.6 1.4 57 -1.2 0.8	⊕ 4.0 ⊕ 4.0 R ⊕ 4.0 ⊕ 4.0	-2.4 3.6 -3.4 2.6	-9.2 -1.2 -11.6 -3.7 -12.7 -4.7	-21.2 -11.2 -25.6 -15.7 -27.7 -17.7	-27.8 -46.4 -34.5 -49.8 -37.8	20
211 68 47 TMS 211 65 02 TMS 211 68 63 KS 211 67 15 SPEED TIP	4.6 71 4.8 74	0.186 600 0.240 600 0.248	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec]	1669 900 1661 870 1741	1383 835 1429 808 1502 964 2230	1140 772 1222 749 1290 900 1944	933 713 1042 692 1101 840 1693	756 656 882 638 936	609 602 743 587 793	546 483 551 622 538 666	⊕ RZR ⊕ RZR □ RZR	100 m 190 m 100 m 175 m 5 X 100 m 170 m 170 m	-1.1 0.9 -0.7 1.3 52 -0.6 1.4 57 -1.2 0.8	⊕ 4.0 ⊕ 4.0 R ⊕ 4.0 ⊕ 4.0	-2.4 3.6 -3.4 2.6 -3.8 2.2	-9.2 -1.2 -11.6 -3.7 -12.7 -4.7	-21.2 -11.2 -25.6 -15.7 -27.7 -17.7	-27.8 -46.4 -34.5 -49.8 -37.8	20 20 20
211 68 47 TMS 211 65 02 TMS 211 68 63 KS 211 67 15	50 4.1 63 4.6 71 4.8 74	0.186 600 0.240 600 0.248 600 0.260	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec]	1669 900 1661 870 1741 1030 2546	1383 835 1429 808 1502 964 2230	1140 772 1222 749 1290 900 1944	933 713 1042 692 1101 840 1693	756 656 882 638 936 782 1468	609 602 743 587 793 727 1268	546 483 551 622 538 666 673 1087	⊕ RZR ⊕ RZR □ RZR	100 m 190 m 100 m 175 m 3 X 100 m 170 m 100 m 170 m	-1.1 0.9 -0.7 1.3 52 -0.6 1.4 57 -1.2 0.8	⊕ 4.0 ⊕ 4.0 R ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕	-2.4 3.6 -3.4 2.6 -3.8 2.2 -1.9 4.2	-9.2 -1.2 -11.6 -3.7 -12.7 -4.7 -7.2 0.9	-21.2 -11.2 -25.6 -15.7 -27.7 -17.7	-27.8 -46.4 -34.5 -49.8 -37.8 -30.6 -18.5	20 20 20
211 68 47 TMS 211 65 02 TMS 211 68 63 KS 211 67 15 SPEED TIP 240 81 27	50 4.1 63 4.6 71 4.8 74	0.186 600 0.240 600 0.248 600 0.260	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec]	1669 900 1661 870 1741 1030 2546	1383 835 1429 808 1502 964 2230	1140 772 1222 749 1290 900 1944	933 713 1042 692 1101 840 1693	756 656 882 638 936 782 1468	609 602 743 587 793 727 1268	546 483 551 622 538 666 673 1087	⊕ RZR ⊕ RZR ⊕ RZR 5.€ ⊕ RZR ⊕ RZR ⊕ RZR	100 m 190 m 100 m 175 m 5 X 100 m 170 m 100 m 170 m 100 m 100 m 100 m 100 m	-1.1 0.9 -0.7 1.3 52 -0.6 1.4 57 -1.2 0.8 Vin	⊕ 4.0 ⊕ 4.0 R ⊕ 4.0 ⊕ 4.0 ⊕ 3.9	-2.4 3.6 -3.4 2.6 -3.8 2.2 -1.9 4.2	-9.2 -1.2 -11.6 -3.7 -12.7 -4.7 -7.2 0.9	-21.2 -11.2 -25.6 -15.7 -27.7 -17.7 -16.6 -6.5	-27.8 -46.4 -34.5 -49.8 -37.8 -30.6 -18.5	20 20 20
211 68 47 TMS 211 65 02 TMS 211 68 63 KS 211 67 15 SPEED TIP 240 81 27 KS	50 4.1 63 4.6 71 4.8 74 5.8 90 6.2	0.186 600 0.240 600 0.248 600 0.260	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec]	1669 900 1661 870 1741 1030 2546 954 2653 910	1383 835 1429 808 1502 964 2230 902 2372 856	1140 772 1222 749 1290 900 1944 852 2116 804	933 713 1042 692 1101 840 1693 805 1889 754	756 656 882 638 936 782 1468 759 1679 706	609 602 743 587 793 727 1268 714 1486 660	546 483 551 622 538 666 673 1087	⊕ RZR ⊕ RZR	100 m 190 m 100 m 175 m	-1.1 0.9 -0.7 1.3 52 -0.6 1.4 57 -1.2 0.8 Vin -1.0 1.0	⊕ 4.0 ⊕ 4.0 R ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0	-2.4 3.6 -3.4 2.6 -3.8 2.2 -1.9 4.2 -2.4 3.4 -3.0	-9.2 -1.2 -11.6 -3.7 -12.7 -4.7 -7.2 0.9	-21.2 -11.2 -25.6 -15.7 -27.7 -17.7 -16.6 -6.5	-27.8 -46.4 -34.5 -49.8 -37.8 -30.6 -18.5	20 20 20

	Bullet Item No.	Weight g gr	Barrel length/ mm BC-Value ¹⁾	V ²⁾	0m	50m	100m	150m	200m	250m	300m	⊕ RZR *	3)	50m	100m	150m Trajecto	200m ory (cm)	250m	300m	Ctg/ box
												6 6		55	CE					
									-			0.3	X	33	JE					
REEN	EVO GREEN	6.0	600	V[m/sec]	990	936	883	834	788	740	694	\oplus	100 m	-1.1	\oplus	-2.1	-7.6	-17.2	-31.2	20
Zead-free*	240 14 04	93	0.309	E[J]	2940	2628	2339	2087	1863	1643	1445	RZR	203 m	0.9	4.0	3.9	0.3	-7.2	-19.2	
	DK	9.1	600	V[m/sec]	820	771	724	679	635	594	553	⊕	100 m	-0.4	⊕	-4.3	-13.8	-29.5	-52.2	20
	211 69 95	140	0.305	E[J]	3059	2705	2385	2098	1835	1605	1391	RZR	165 m	1.6	4.0	1.7	-5.9	-19.6	-40.2	
	EVO	10.1	600	V[m/sec]	790	752	714	678	643	609	576	⊕	100 m	-0.3	⊕	-4.5	-14.3	-30.1	-52.5	20
	231 85 56	156	0.379	E[J]	3152	2856	2574	2321	2088	1873	1675	RZR	163 m	1.7	4.0	1.5	-6.3	-20.0	-40.4	
	7																			
												6.5	X	57						
CCW																				
A STREET	EVO GREEN	6.0	600	V[m/sec]	950	897	848	801	753	705	659	\oplus	100 m	-1.0	\oplus	-2.4	-8.7	-19.3	-34.9	20
	240 14 05	93	0.309	E[J]	2708	2414	2157	1925	1701	1491	1303	RZR	194 m	1.0	4.0	3.6	-0.7	-9.2	-22.8	
	KS	8.2	600	V[m/sec]	840	798	758	718	680	643	607	\oplus	100 m	-0.6	\oplus	-3.7	-12.2	-26.0	-45.7	20
	211 70 96	127	0.361	E[J]	2893	2611	2356	2114	1896	1695	1511	RZR	172 m	1.4	4.0	2.3	-4.2	-16.0	-33.7	
	DK	9.1	600	V[m/sec]	800	752	706	661	618	577	538	\oplus	100 m	-0.3	\oplus	-4.6	-14.8	-31.5	-55.6	20
	231 43 52	140	0.305	E[J]	2912	2573	2268	1988	1738	1515	1317	RZR	161 m	1.7	4.0	1.4	-6.9	-21.6	-43.7	
					100										_					
						-		and the last				6.5	X	57	R					
EEN	ENO CDEEN	6.0	500	\/[/]	020	000	010	771	726	601	620	•	100	0.0		2.0	0.7	21.2	20.2	20
Canal Street Par	EVO GREEN	6.0	600	V[m/sec]	920	868	818	771	726	681	638	⊕ p.zp	100 m	-0.9	⊕	-2.8	-9.7	-21.3	-38.2	20
	240 14 07 KS	93	0.309	E[J]	2539 860	2260 817	2007 776	1783 736	1581 698	1391	1221	RZR	187 m 100 m	1.1 -0.7	4.0 ⊕	3.2 -3.4	-1.7 -11.4	-11.2 -24.4	-26.1 -43.0	20
	211 71 50	127	0.361	V[m/sec]	3032	2737	2469	2221	1998	1786	1596	⊕ RZR	177 m	1.4	4.0	2.6	-3.3	-14.3	-30.9	20
	DK	9.1	600	E[J] V[m/sec]	760	713	668	625	584	544	506	KZK ⊕	177 m	-0.1		-5.4	-3.3	-36.1	-63.3	20
	211 71 18	140	0.305	E[J]	2628	2313	2030	1777	1552	1347	1165	RZR	154 m	1.9	⊕ 4.0	0.6	-9.1	-26.1	-51.3	20
	2117118	140	0.303	F[J]	2020	2313	2030	1///	1332	1347	1103	NZN	134111	1.5	4.0	0.0	-9.1	-20.1	-51.5	
												6.5	×	65	RW	IS				
				_			-													
	KS	8.2	600	V[m/sec]	900	856	814	773	733	694	657	\oplus	100 m	-0.8	\oplus	-2.9	-9.9	-21.4	-38.1	20
	211 69 79	127	0.361	E[J]	3321	3004	2717	2450	2203	1975	1770	RZR	185 m	1.2	4.0	3.1	-1.9	-11.5	-26.2	
				-					1000											
		_							-			6.5	X	65	RF	RW	5			
		_				_														
	-	_																		
	KS	8.2	600	V[m/sec]	860	817	776	736	698	660	624	\oplus	100 m	-0.7	\oplus	-3.4	-11.4	-24.4	-43.0	20
	KS 211 69 87	8.2 127	600 0.361	V[m/sec] E[J]	860 3032	817 2737	776 2469	736 2221	698 1998	660 1786	624 1596		100 m 177 m	-0.7 1.4	4.0	-3.4 2.6	-11.4 -3.3	-24.4 -14.3	-43.0 -30.9	20
											1596	RZR	177 m	1.4						20
											1596	RZR	177 m							20
EEN	211 69 87	127	0.361	E[J]	3032	2737	2469	2221	1998	1786	1596	RZR 6.5	177 m	1.4 68	4.0	2.6	-3.3	-14.3	-30.9	
EEN	211 69 87 EVO GREEN	6.0	0.361	E[J] V[m/sec]	3032 1110	2737	2469 996	947	1998 897	1786	1596 795	RZR 6.5	177 m	1.4 68 -1.4	4.0	2.6	-3.3	-14.3	-30.9	
EEN	211 69 87 EVO GREEN 231 88 67	6.0	0.361 650 0.309	E[J] V[m/sec] E[J]	3032 1110 3696	2737 1050 3308	2469 996 2976	947 2690	1998 897 2414	1786 846 2147	1596 795 1896	RZR 6.5 RZR	177 m 100 m 235 m	1.4 68 -1.4 0.6	4.0 ⊕ 4.0	2.6 -1.1 4.9	-3.3 -4.9 3.1	-14.3 -11.7 -1.7	-30.9 -22.0 -10.0	20
EEN	211 69 87 EVO GREEN	6.0	0.361	E[J] V[m/sec]	3032 1110	2737	2469 996	947	1998 897	1786	1596 795	RZR 6.5 ⊕ RZR ⊕	177 m	1.4 68 -1.4	4.0	2.6	-3.3	-14.3	-30.9	20

For more centrefire rifle cartridges, please see our listings in the GECO section of this catalogue.

Warning - Fire or projection hazard. - Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.

VO GREEN 31 88 62	6.2	600																	
	6.2	600								1	.27	70 V	Vin						
31 88 62		000	V[m/sec]	1080	1018	959	903	849	798	748	\oplus	100 m	-1.3	\oplus	-1.4	-5.7	-13.5	-25.1	20
	96	0.292	E[J]	3616	3213	2851	2528	2234	1974	1734	RZR	223 m	0.7	4.0	4.6	2.3	-3.5	-13.1	
IT	8.4	600	V[m/sec]	921	879	839	800	763	726	690	\oplus	100 m	-0.9	\oplus	-2.6	-9.0	-19.6	-34.9	20
31 92 10	130	0.385	E[J]	3567	3249	2960	2691	2448	2216	2002	RZR	192 m	1.1	4.0	3.4	-1.0	-9.6	-22.8	
МК	8.4	600	V[m/sec]	960	905	852	801	752	705	660	\oplus	100 m	-1.0	\oplus	-2.4	-8.6	-19.2	-34.7	20
11 72 90	130	0.299	E[J]	3871	3440	3049	2695	2375	2088	1830	RZR	195 m	1.0	4.0	3.7	-0.5	-9.1	-22.6	
PEED TIP PRO	9.1	600	V[m/sec]	925	890	856	825	795	764	734	\oplus	100 m	-1.0	\oplus	-2.4	-8.4	-18.3	-32.3	20
40 74 32	140	0.459	E[J]	3893	3604	3334	3097	2876	2656	2451	RZR	197 m	1.1	4.0	3.6	-0.4	-8.2	-20.3	
S	9.7	600	V[m/sec]	896	850	806	764	722	682	643	\oplus	100 m	-0.8	\oplus	-3.0	-10.2	-22.1	-39.3	20
11 72 82	150	0.345	E[J]	3894	3504	3151	2831	2528	2256	2005	RZR	184 m	1.2	4.0	3.1	-2.1	-12.0	-27.1	
VO	10.0	600	V[m/sec]	830	785	742	700	660	621	583	\oplus	100 m	-0.5	\oplus	-4.0	-12.9	-27.5	-48.5	20
31 59 72	154	0.335	E[J]	3445	3081	2753	2450	2178	1928	1699	RZR	169 m	1.5	4.0	2.1	-4.9	-17.5	-36.5	
								•			.27	70 V	VSI	Л					
VO GREEN	6.2	650	V[m/sec]	1119	1055	995	937	882	828	777	\oplus	100 m	-1.4	\oplus	-1.1	-5.0	-12.0	-22.6	20
31 88 63	96	0.292	E[J]	3882	3450	3069	2722	2412	2125	1872	RZR	233 m	0.6	4.0	4.9	3.0	-2.0	-10.6	
IT	8.4	650	V[m/sec]	940	898	858	818	776	738	702	\oplus	100 m	-1.0	\oplus	-2.4	-8.4	-18.5	-33.2	20
31 92 06	130	0.385	E[J]	3716	3391	3096	2814	2532	2290	2072	RZR	196 m	1.0	4.0	3.7	-0.3	-8.5	-21.1	
											7 >	57							
) Classic	10.5	600	V[m/sec]	810	765	721	678	637	598	560	\oplus	100 m	-0.4	\oplus	-4.3	-14.0	-29.8	-52.4	20
11 85 13	162	0.325	E[J]	3445	3072	2729	2413	2130	1877	1646	RZR	164 m	1.6	4.0	1.7	-6.0	-19.8	-40.4	
											7 >	57	R						
VO GREEN	8.2	600	V[m/sec]	830	792	755	718	683	649	616	\oplus	100 m	-0.5	\oplus	-3.8	-12.3	-26.1	-45.7	20
31 85 44	127	0.392	E[J]	2824	2572	2337	2114	1913	1727	1556	RZR	171 m	1.4	4.0	2.2	-4.4	-16.2	-33.8	
s	10.5	600	V[m/sec]	760	722	686	651	617	584	552	\oplus	100 m	-0.1	\oplus	-5.1	-15.9	-33.3	-57.8	20
11 85 48	162	0.381	E[J]	3032	2737	2471	2225	1999	1791	1600	RZR	157 m	1.8	4.0	0.9	-8.0	-23.3	-45.8	
МК	11.2	600	V[m/sec]	740	703	668	633	600	567	536	\oplus	100 m	0.0	\oplus	-5.5	-17.1	-35.5	-61.7	20
11 74 36	173	0.383	E[J]	3067	2768	2499	2244	2016	1800	1609	RZR	154 m	2.0	4.0	0.6	-9.0	-25.4	-49.5	
Classic	11.5	600	V[m/sec]	730	691	653	616	581	547	514	\oplus	100 m	0.1	\oplus	-5.8	-18.1	-37.7	-65.5	20
					2746	2452	2182	1941	1720	1519	RZR	151 m	2.1	4.0	0.2	-10.1	-27.7	-53.5	
P 44 S 1 V 3 I V 3 S 1 1 N	0 74 32 0 1 72 82 0 1 59 72 0 GREEN 1 88 63 1 1 92 06 Classic 1 85 13 0 GREEN 1 85 44	### DEPTO PRO 9.1 10 74 32	### DEPT PRO P.1 600 1 74 32 140 0.459 9.7 600 1 72 82 150 0.345 0 10.0 600 1 59 72 154 0.335 O GREEN 6.2 650 1 88 63 96 0.292 T 8.4 650 1 92 06 130 0.385 Classic 10.5 600 1 85 13 162 0.325 O GREEN 8.2 600 1 85 44 127 0.392 1 10.5 600 1 85 48 162 0.381 AK 11.2 600	Seed TIP PRO 9.1 600 V[m/sec]	Seed TIP PRO 9.1 600 V[m/sec] 925	EED TIP PRO 9.1 600 V[m/sec] 925 890 0 74 32 140 0.459 E[J] 3893 3604 0 74 32 150 0.345 E[J] 3894 3504 0 10.0 600 V[m/sec] 830 785 1 59 72 154 0.335 E[J] 3445 3081 O GREEN 6.2 650 V[m/sec] 1119 1055 1 88 63 96 0.292 E[J] 3882 3450 T 8.4 650 V[m/sec] 940 898 1 92 06 130 0.385 E[J] 3716 3391 Classic 10.5 600 V[m/sec] 810 765 1 85 13 162 0.325 E[J] 3445 3072 O GREEN 8.2 600 V[m/sec] 830 792 1 85 44 127 0.392 E[J] 2824 2572 1 85 48 162 0.381 E[J] 3032 2737 1 85 48 162 0.381 E[J] 3032 2737 1 85 48 162 0.381 E[J] 3032 2737	EED TIP PRO 9.1 600	Seed TIP PRO 9.1 600 V[m/sec] 925 890 856 825	Seed TIP PRO 9.1 600 V[m/sec] 925 890 856 825 795		Part Part	EED TIP PRO 9.1 600 V[m/sec] 925 890 856 825 795 764 734 ⊕ 0.74 32 140 0.459 E[J] 3893 3604 3334 3097 2876 2656 2451 RZR 9.7 600 V[m/sec] 896 850 806 764 722 682 643 ⊕ 1.72 82 150 0.345 E[J] 3894 3504 3151 2831 2528 2256 2005 RZR 0 10.0 600 V[m/sec] 830 785 742 700 660 621 583 ⊕ 1.59 72 154 0.335 E[J] 3445 3081 2753 2450 2178 1928 1699 RZR 1.59 72 154 0.335 E[J] 3882 3450 3069 2722 2412 2125 1872 RZR 1.88 63 96 0.292 E[J] 3882 3450 3069 2722 2412 2125 1872 RZR 1.92 06 130 0.385 E[J] 3716 3391 3096 2814 2532 2290 2072 RZR 1.92 06 130 0.385 E[J] 3716 3391 3096 2814 2532 2290 2072 RZR 1.85 13 162 0.325 E[J] 3445 3072 2729 2413 2130 1877 1646 RZR 1.85 44 127 0.392 E[J] 2824 2572 2337 2114 1913 1727 1556 RZR 1.85 44 127 0.392 E[J] 2824 2572 2337 2114 1913 1727 1556 RZR 1.85 44 127 0.392 E[J] 3032 2737 2471 2225 1999 1791 1600 RZR 1.85 48 162 0.381 E[J] 3032 2737 2471 2225 1999 1791 1600 RZR	EED TIP PRO 9.1 600 V[m/sec] 925 890 856 825 795 764 734 ⊕ 100 m 10 74 32 140 0.459 E[J] 3893 3604 3334 3097 2876 2656 2451 RZR 197 m 9.7 600 V[m/sec] 896 850 806 764 722 682 643 ⊕ 100 m 172 82 150 0.345 E[J] 3894 3504 3151 2831 2528 2256 2005 RZR 184 m O 10.0 600 V[m/sec] 830 785 742 700 660 621 583 ⊕ 100 m 1 59 72 154 0.335 E[J] 3445 3081 2753 2450 2178 1928 1699 RZR 169 m O GREEN 6.2 650 V[m/sec] 1119 1055 995 937 882 828 777 ⊕ 100 m 1 88 63 96 0.292 E[J] 3882 3450 3069 2722 2412 2125 1872 RZR 233 m T 8.4 650 V[m/sec] 940 898 858 818 776 738 702 ⊕ 100 m 1 92 06 130 0.385 E[J] 3716 3391 3096 2814 2532 2290 2072 RZR 196 m Classic 10.5 600 V[m/sec] 810 765 721 678 637 598 560 ⊕ 100 m 1 85 13 162 0.325 E[J] 3445 3072 2729 2413 2130 1877 1646 RZR 164 m Classic 10.5 600 V[m/sec] 830 792 755 718 683 649 616 ⊕ 100 m 1 85 44 127 0.392 E[J] 2824 2572 2337 2114 1913 1727 1556 RZR 171 m 1 10.5 600 V[m/sec] 760 722 686 651 617 584 552 ⊕ 100 m 1 85 48 162 0.381 E[J] 3032 2737 2471 2225 1999 1791 1600 RZR 157 m 1 1 2 600 V[m/sec] 740 703 668 633 600 567 536 ⊕ 100 m	EED TIP PRO 9.1 600	FEED TIP PRO 9.1 600 V[m/sec] 925 890 856 825 795 764 734 ⊕ 100 m -1.0 ⊕		REDIT PRO 9.1		Fee Tip Pro 9.1 600 V[m/kec 25 890 856 825 795 764 734 9 100 m -1.0 9 -2.4 -8.4 -18.3 -32.3 1074 32

	Bullet Item No.	Weight g gr	Barrel length/ mm BC-Value ¹⁾	V 2) E	0m	50m	100m	150m	200m	250m	300m	⊕ RZR ¹	k 3)	50m	100m	150m Trajecto	200m ory (cm)	250m	300m	Ctg/ box
, a Gença,)		7 ı	nm	Re	m.	Ma	g.			
GREEN	EVO GREEN	8.2	650	V[m/sec]	1010	966	924	883	843	804	767	\oplus	100 m	-1.2	\oplus	-1.7	-6.5	-14.8	-26.9	20
, of Gesol,	231 85 45	127	0.392	E[J]	4182	3826	3500	3197	2914	2650	2412	RZR	214 m	0.8	4.0	4.3	1.5	-4.8	-15.0	
GREEN	ніт	9.1	650	V[m/sec]	940	900	861	824	787	752	717	\oplus	100 m	-1.0	\oplus	-2.3	-8.3	-18.2	-32.4	20
	231 88 48	140	0.409	E[J]	4020	3686	3373	3089	2818	2573	2339	RZR	198 m	1.0	4.0	3.7	-0.2	-8.1	-20.3	
NEW	SPEED TIP	9.7	650	V[m/sec]	928	894	861	830	800	769	739	\oplus	100 m	-1.0	\oplus	-2.3	-8.2	-18.0	-31.9	20
	240 70 08	150	0.479	E[J]	4177	3876	3595	3341	3104	2868	2649	RZR	198 m	1.0	4.0	3.7	-0.2	-8.0	-19.8	
NEW	SPEED TIP PRO	9.7	650	V[m/sec]	950	916	882	850	819	789	758	\oplus	100 m	-1.0	\oplus	-2.1	-7.6	-16.8	-29.9	20
	240 70 07	150	0.479	E[J]	4377	4069	3773	3504	3253	3019	2787	RZR	204 m	1.0	4.0	3.9	0.4	-6.7	-17.8	
	EVO	10.3	650	V[m/sec]	870	831	794	757	721	686	653	\oplus	100 m	-0.7	\oplus	-3.2	-10.6	-22.8	-40.2	20
	231 65 30	159	0.399	E[J]	3898	3556	3247	2951	2677	2424	2196	RZR	181 m	1.3	4.0	2.9	-2.5	-12.7	-28.1	
	KS	10.5	650	V[m/sec]	890	849	809	770	732	696	660	\oplus	100 m	-0.8	\oplus	-3.0	-10.1	-21.7	-38.5	20
	211 85 05	162	0.381	E[J]	4159	3784	3436	3113	2813	2543	2287	RZR	184 m	1.2	4.0	3.0	-2.1	-11.7	-26.5	
	ID Classic	11.5	650	V[m/sec]	840	798	757	717	678	640	604	\oplus	100 m	-0.6	\oplus	-3.7	-12.2	-26.1	-45.9	20
	211 84 91	177	0.356	E[J]	4057	3662	3295	2956	2643	2355	2098	RZR	172 m	1.4	4.0	2.3	-4.2	-16.0	-33.9	
												7)	6 4	ŀ						
	KS	8.0	600	V[m/sec]	965	908	854	801	751	702	655	\oplus	100 m	-1.0	\oplus	-2.4	-8.6	-19.1	-34.6	20
Cook"	211 75 68	123	0.290	E[J]	3725	3298	2917	2566	2256	1971	1716	RZR	195 m	1.0	4.0	3.7	-0.5	-9.1	-22.6	
REC	EVO GREEN	8.2	600	V[m/sec]	950	908	868	828	790	753	716	\oplus	100 m	-1.0	\oplus	-2.2	-8.1	-17.8	-31.9	20
ales Generally and	231 83 21	127	0.392	E[J]	3700	3380	3089	2811	2559	2325	2102	RZR	199 m	1.0	4.0	3.8	-0.1	-7.8	-19.9	
REEN	HIT	9.1	600	V[m/sec]	900	861	824	787	752	717	683	\oplus	100 m	-0.8	\oplus	-2.8	-9.5	-20.6	-36.4	20
	231 88 46	140	0.409	E[J]	3673	3362	3079	2809	2565	2331	2116	RZR	188 m	1.2	4.0	3.3	-1.5	-10.5	-24.4	
NEW	SPEED TIP	9.7	650	V[m/sec]	880	846	812	779	747	716	685	\oplus	100 m	-0.8	\oplus	-2.9	-9.9	-21.3	-37.5	20
	240 70 10	150	0.455	E[J]	3756	3471	3198	2943	2706	2486	2276	RZR	183 m	1.2	3.9	2.9	-2.2	-11.6	-25.8	
NEW	SPEED TIP PRO	9.7	600	V[m/sec]	930	896	863	832	802	771	741	\oplus	100 m	-1.0	\oplus	-2.3	-8.2	-17.9	-31.7	20
	240 70 06	150	0.479	E[J]	4195	3894	3612	3357	3120	2883	2663	RZR	199 m	1.0	4.0	3.7	-0.1	-7.8	-19.6	
	EVO	10.3	600	V[m/sec]	855	817	779	743	708	673	640	\oplus	100 m	-0.7	\oplus	-3.4	-11.2	-23.9	-42.1	20
	231 54 31	159	0.399	E[J]	3765	3438	3125	2843	2582	2333	2109	RZR	177 m	1.3	4.0	2.6	-3.2	-14.0	-30.1	
	KS	10.5	600	V[m/sec]	850	810	771	733	697	661	627	\oplus	100 m	-0.6	\oplus	-3.5	-11.6	-24.7	-43.5	20
	211 84 75	162	0.381	E[J]	3793	3445	3121	2821	2550	2294	2064	RZR	175 m	1.4	4.0	2.5	-3.6	-14.7	-31.5	
	ID Classic	10.5	600	V[m/sec]	865	818	772	728	685	644	604	\oplus	100 m	-0.7	\oplus	-3.5	-11.6	-24.9	-44.2	20
	211 85 80	162	0.325	E[J]	3928	3513	3129	2782	2463	2177	1915	RZR	175 m	1.3	4.0	2.5	-3.6	-15.0	-32.2	
	нмк	11.2	600	V[m/sec]	845	805	767	729	693	658	624	\oplus	100 m	-0.6	\oplus	-3.6	-11.8	-25.1	-44.0	20
	211 75 17	173	0.383	E[J]	3999	3629	3294	2976	2689	2425	2181	RZR	174 m	1.4	4.0	2.4	-3.8	-15.1	-32.1	
	ID Classic	11.5	600	V[m/sec]	820	778	738	698	660	623	588	\oplus	100 m	-0.5	\oplus	-4.0	-13.1	-27.8	-48.9	20
	211 85 99	177	0.356	E[J]	3866	3480	3132	2801	2505	2232	1988	RZR	168 m	1.5	4.0	2.0	-5.1	-17.8	-36.9	

1) BC-Value = Ballistic coefficient 2) V = Velocity, E = Energy 3) RZR = Recommended Zero Range

Warning - Fire or projection hazard - Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.

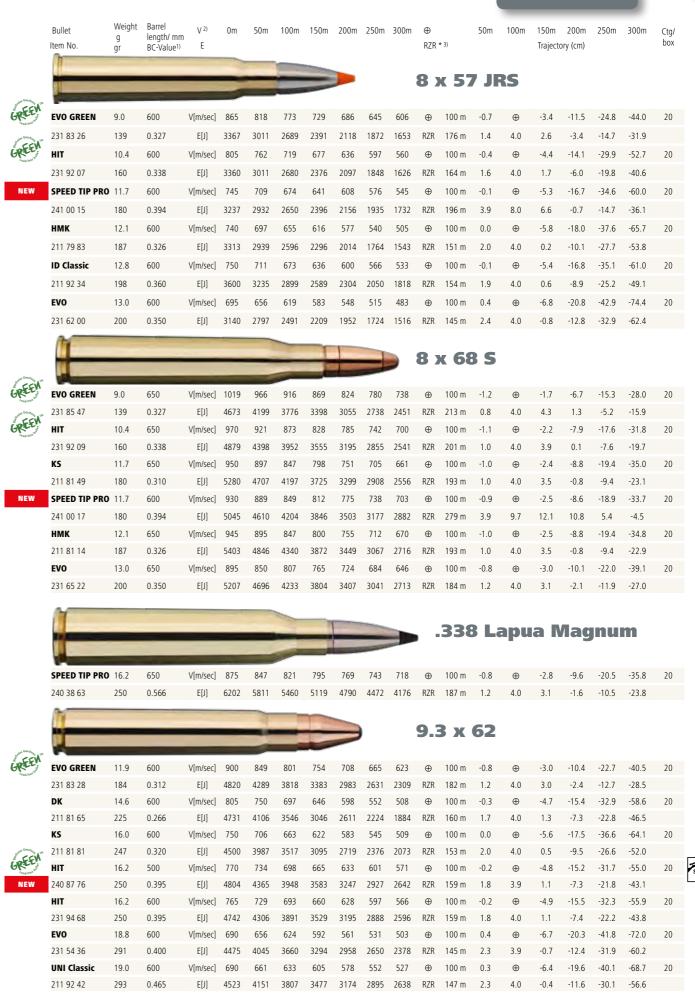
29

	Bullet Item No.	Weight g gr	Barrel length/ mm BC-Value ¹⁾	V 2) E	0m	50m	100m	150m	200m	250m	300m	⊕ RZR ¹	÷ 3)	50m	100m	150m Trajecto	200m ory (cm)	250m	300m	Ctg/ box
						-						7)	65	R						
			- 50	-		-														
	KS	8.0	600	V[m/sec]	925	870	817	766	716	669	624	\oplus	100 m	-0.9	\oplus	-2.8	-9.8	-21.6	-38.9	20
_{as} Geso _{lo}	211 76 30	123	0.290	E[J]	3423	3028	2670	2347	2051	1790	1558	RZR	186 m	1.1	4.0	3.2	-1.8	-11.6	-26.8	
REEN	EVO GREEN	8.2	600	V[m/sec]	910	869	830	792	754	718	683	\oplus	100 m	-0.9	\oplus	-2.7	-9.3	-20.2	-35.9	20
	231 83 22	127	0.392	E[J]	3395	3096	2824	2572	2331	2114	1913	RZR	189 m	1.1	4.0	3.3	-1.3	-10.3	-24.0	
EEN"	HIT	9.1	600	V[m/sec]	850	813	776	741	707	673	640	⊕	100 m	-0.6	⊕	-3.4	-11.3	-24.2	-42.4	20
d-free V	231 88 47	140	0.409	E[J]	3277	2997	2731	2490	2267	2054	1858	RZR	176 m	1.3	4.0	2.5	-3.4	-14.2	-30.5	
	EVO				810		731		657					-0.4						20
		10.3	600	V[m/sec]		770		693		621	587	⊕	100 m		⊕	-4.2	-13.5	-28.4	-49.8	20
	231 54 32	159	0.369	E[J]	3379	3053	2752	2473	2223	1986	1775	RZR	166 m	1.6	4.0	1.8	-5.5	-18.5	-37.9	
	KS	10.5	600	V[m/sec]	820	781	743	706	670	635	602	\oplus	100 m	-0.5	\oplus	-4.0	-12.9	-27.2	-47.7	20
	211 84 83	162	0.381	E[J]	3530	3202	2898	2617	2357	2117	1903	RZR	169 m	1.5	4.0	2.1	-4.8	-17.2	-35.7	
	ID Classic	10.5	600	V[m/sec]	830	784	739	696	655	615	576	\oplus	100 m	-0.5	\oplus	-4.0	-13.1	-27.9	-49.2	20
	211 86 02	162	0.325	E[J]	3617	3227	2867	2543	2252	1986	1742	RZR	168 m	1.5	4.0	2.0	-5.1	-17.9	-37.2	
	нмк	11.2	600	V[m/sec]	810	771	734	697	662	628	594	\oplus	100 m	-0.4	\oplus	-4.1	-13.3	-28.1	-49.1	20
	211 75 92	173	0.383	E[J]	3674	3329	3017	2721	2454	2209	1976	RZR	167 m	1.6	4.0	1.9	-5.3	-18.1	-37.1	
	ID Classic	11.5	600	V[m/sec]	810	769	728	689	651	615	580	⊕	100 m	-0.4	⊕	-4.2	-13.6	-28.8	-50.5	20
	211 86 10	177	0.356	E[J]	3773	3400	3047	2730	2437	2175	1934	RZR	166 m	1.6	4.0	1.8	-5.6	-18.7	-38.4	
	~																			
	100			_																
												.30)8 V	Vin	١.					
Ologo TM								•				.30)8 V	Vin	۱.					
EM"	EVO GREEN	8.8	600	V[m/sec]	890	844	799	756	714	674	635	.30	100 m	Vin -0.8	1.	-3.1	-10.4	-22.6	-40.2	20
ĚŅ"	EVO GREEN 231 83 23	8.8 136	600 0.340	V[m/sec] E[J]	890 3485	844 3134	799 2809	756 2515	714 2243	674 1999						-3.1 3.0	-10.4 -2.4	-22.6 -12.6	-40.2 -28.2	20
EN"											635	⊕	100 m	-0.8	⊕					20
ÈN"	231 83 23 KS 211 77 03	136 9.7 150	0.340 600 0.298	E[J] V[m/sec] E[J]	3485 850 3504	3134 799 3096	2809 750 2728	2515 703 2397	2243 657 2093	1999 613 1822	635 1774 572 1587	⊕ RZR ⊕ RZR	100 m 182 m 100 m 171 m	-0.8 1.2 -0.6 1.4	⊕ 4.0 ⊕ 4.0	3.0 -3.8 2.3	-2.4 -12.6 -4.5	-12.6 -27.0 -16.9	-28.2 -48.1 -36.0	20
ĒŅ.	231 83 23 KS 211 77 03 ID Classic	136 9.7 150 9.7	0.340 600 0.298 600	E[J] V[m/sec] E[J] V[m/sec]	3485 850 3504 860	3134 799 3096 810	2809 750 2728 761	2515 703 2397 714	2243 657 2093 669	1999 613 1822 625	635 1774 572 1587 583	⊕ RZR ⊕ RZR ⊕	100 m 182 m 100 m 171 m 100 m	-0.8 1.2 -0.6 1.4 -0.6	⊕ 4.0 ⊕ 4.0 ⊕	3.0 -3.8 2.3 -3.6	-2.4 -12.6 -4.5 -12.1	-12.6 -27.0 -16.9 -26.0	-28.2 -48.1 -36.0 -46.2	
EN"	231 83 23 KS 211 77 03 ID Classic 211 77 11	136 9.7 150 9.7 150	0.340 600 0.298 600 0.303	E[J] V[m/sec] E[J] V[m/sec] E[J]	3485 850 3504 860 3587	3134 799 3096 810 3182	2809 750 2728 761 2809	2515 703 2397 714 2473	2243 657 2093 669 2171	1999 613 1822 625 1895	635 1774 572 1587 583 1648	⊕ RZR ⊕ RZR ⊕ RZR	100 m 182 m 100 m 171 m 100 m	-0.8 1.2 -0.6 1.4 -0.6	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0	3.0 -3.8 2.3 -3.6 2.4	-2.4 -12.6 -4.5 -12.1 -4.0	-12.6 -27.0 -16.9 -26.0 -16.0	-28.2 -48.1 -36.0 -46.2 -34.2	20
EN"	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT	136 9.7 150 9.7 150 9.7	0.340 600 0.298 600 0.303 500	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec]	3485 850 3504 860 3587 870	3134 799 3096 810 3182 830	2809 750 2728 761 2809 791	2515 703 2397 714 2473 753	2243 657 2093 669 2171 716	1999 613 1822 625 1895 680	635 1774 572 1587 583 1648 646	⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR ⊕	100 m 182 m 100 m 171 m 100 m 173 m 100 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕	3.0 -3.8 2.3 -3.6 2.4 -3.2	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7	20
roho	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15	136 9.7 150 9.7 150	0.340 600 0.298 600 0.303 500 0.386	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J]	3485 850 3504 860 3587	3134 799 3096 810 3182 830 3341	2809 750 2728 761 2809 791 3035	2515 703 2397 714 2473 753 2750	2243 657 2093 669 2171	1999 613 1822 625 1895	635 1774 572 1587 583 1648	⊕ RZR ⊕ RZR ⊕ RZR	100 m 182 m 100 m 171 m 100 m 173 m 100 m	-0.8 1.2 -0.6 1.4 -0.6	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0	3.0 -3.8 2.3 -3.6 2.4	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7	20 20 20
oh	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT	136 9.7 150 9.7 150 9.7 150	0.340 600 0.298 600 0.303 500	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec]	3485 850 3504 860 3587 870 3671	3134 799 3096 810 3182 830	2809 750 2728 761 2809 791	2515 703 2397 714 2473 753	2243 657 2093 669 2171 716 2486	1999 613 1822 625 1895 680 2243	635 1774 572 1587 583 1648 646 2024	⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR RZR	100 m 182 m 100 m 171 m 100 m 173 m 100 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7	20
oh	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15 HIT	136 9.7 150 9.7 150 9.7 150 10.7	0.340 600 0.298 600 0.303 500 0.386 600	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec]	3485 850 3504 860 3587 870 3671 820	3134 799 3096 810 3182 830 3341 785	2809 750 2728 761 2809 791 3035 750	2515 703 2397 714 2473 753 2750 716	2243 657 2093 669 2171 716 2486 683	1999 613 1822 625 1895 680 2243 651	635 1774 572 1587 583 1648 646 2024 620	⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR ⊕	100 m 182 m 100 m 171 m 100 m 173 m 100 m 180 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7 1.3 -0.5	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8 -3.9	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0 -26.4	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7	20 20 20
roj _n	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15 HIT 231 88 45	136 9.7 150 9.7 150 9.7 150 10.7 165	0.340 600 0.298 600 0.303 500 0.386 600 0.420	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J]	3485 850 3504 860 3587 870 3671 820 3597	3134 799 3096 810 3182 830 3341 785 3297	2809 750 2728 761 2809 791 3035 750 3009	2515 703 2397 714 2473 753 2750 716 2743	2243 657 2093 669 2171 716 2486 683 2496	1999 613 1822 625 1895 680 2243 651 2267	635 1774 572 1587 583 1648 646 2024 620 2057	 ⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR ⊕ 	100 m 182 m 100 m 171 m 100 m 173 m 100 m 180 m 100 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7 1.3 -0.5	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8 -3.9 2.1	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7 -12.5 -4.5	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0 -26.4 -16.5	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7 -46.1 -34.2	20 20 20 20
EEW.	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15 HIT 231 88 45 DK	136 9.7 150 9.7 150 9.7 150 10.7 165 10.7	0.340 600 0.298 600 0.303 500 0.386 600 0.420	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec]	3485 850 3504 860 3587 870 3671 820 3597 800	3134 799 3096 810 3182 830 3341 785 3297 750	2809 750 2728 761 2809 791 3035 750 3009 702	2515 703 2397 714 2473 753 2750 716 2743 656	2243 657 2093 669 2171 716 2486 683 2496 611	1999 613 1822 625 1895 680 2243 651 2267 569	635 1774 572 1587 583 1648 646 2024 620 2057 528	⊕ RZR ⊕	100 m 182 m 100 m 171 m 100 m 173 m 100 m 180 m 100 m 170 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7 1.3 -0.5 1.5	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8 -3.9 2.1 -4.7	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7 -12.5 -4.5	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0 -26.4 -16.5 -32.1	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7 -46.1 -34.2 -56.6	20 20 20 20
EV	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15 HIT 231 88 45 DK 211 79 08	136 9.7 150 9.7 150 9.7 150 10.7 165 10.7 165	0.340 600 0.298 600 0.303 500 0.386 600 0.420 600 0.293	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J]	3485 850 3504 860 3587 870 3671 820 3597 800 3424	3134 799 3096 810 3182 830 3341 785 3297 750 3009	2809 750 2728 761 2809 791 3035 750 3009 702 2637	2515 703 2397 714 2473 753 2750 716 2743 656 2302	2243 657 2093 669 2171 716 2486 683 2496 611 1997	1999 613 1822 625 1895 680 2243 651 2267 569	635 1774 572 1587 583 1648 646 2024 620 2057 528 1491	⊕ RZR	100 m 182 m 100 m 171 m 100 m 173 m 100 m 170 m 100 m 170 m 100 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7 1.3 -0.5 1.5	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8 -3.9 2.1 -4.7 1.3	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7 -12.5 -4.5 -15.1 -7.1	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0 -26.4 -16.5 -32.1 -22.2	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7 -46.1 -34.2 -56.6 -44.8	20 20 20 20 20
EN M	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15 HIT 231 88 45 DK 211 79 08 SPEED TIP	136 9.7 150 9.7 150 9.7 150 10.7 165 10.7 165 10.7	0.340 600 0.298 600 0.303 500 0.386 600 0.420 600 0.293	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec]	3485 850 3504 860 3587 870 3671 820 3597 800 3424 820	3134 799 3096 810 3182 830 3341 785 3297 750 3009 785	2809 750 2728 761 2809 791 3035 750 3009 702 2637 750	2515 703 2397 714 2473 753 2750 716 2743 656 2302 716	2243 657 2093 669 2171 716 2486 683 2496 611 1997 683	1999 613 1822 625 1895 680 2243 651 2267 569 1732 650	635 1774 572 1587 583 1648 646 2024 620 2057 528 1491 618	⊕ RZR ⊕	100 m 182 m 100 m 171 m 100 m 173 m 100 m 180 m 170 m 100 m 170 m 100 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7 1.3 -0.5 1.5 -0.3 1.7	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8 -3.9 2.1 -4.7 1.3 -3.9	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7 -12.5 -4.5 -15.1 -7.1	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0 -26.4 -16.5 -32.1 -22.2 -26.4	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7 -46.1 -34.2 -56.6 -44.8 -46.2	20 20 20 20 20
EW EW	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15 HIT 231 88 45 DK 211 79 08 SPEED TIP 231 81 72 SPEED TIP PRO 240 66 16	136 9.7 150 9.7 150 9.7 150 10.7 165 10.7 165 10.7 165	0.340 600 0.298 600 0.303 500 0.386 600 0.420 600 0.293 600 0.422 500	E[J] V[m/sec] E[J]	3485 850 3504 860 3587 870 3671 820 3597 800 3424 820 3597 830 3686	3134 799 3096 810 3182 830 3341 785 3297 750 3009 785 3297 794 3373	2809 750 2728 761 2809 791 3035 750 3009 702 2637 750 3009 760 3090	2515 703 2397 714 2473 753 2750 716 2743 656 2302 716 2743 726	2243 657 2093 669 2171 716 2486 683 2496 611 1997 683 2496 693 2569	1999 613 1822 625 1895 680 2243 651 2267 569 1732 650 2260 661 2338	635 1774 572 1587 583 1648 646 2024 620 2057 528 1491 618 2043 630 2123	⊕ RZR	100 m 182 m 100 m 171 m 100 m 173 m 100 m 180 m 100 m 170 m 100 m 170 m 100 m 100 m	-0.8 1.2 -0.6 1.4 -0.6 1.3 -0.5 1.5 -0.3 1.7 -0.5 1.5 -0.6 1.5	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8 -3.9 2.1 -4.7 1.3 -3.9 2.1 -3.7 2.3	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7 -12.5 -4.5 -15.1 -7.1 -12.5 -4.5 -12.0 -4.0	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0 -26.4 -16.5 -32.1 -22.2 -26.4 -16.5 -25.5 -15.5	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7 -46.1 -34.2 -56.6 -44.8 -46.2 -34.2 -44.6 -32.5	20 20 20 20 20 20 20
EEW.	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15 HIT 231 88 45 DK 211 79 08 SPEED TIP 231 81 72 SPEED TIP PRO 240 66 16 SPEED TIP PRO	136 9.7 150 9.7 150 9.7 150 10.7 165 10.7 165 10.7 165 10.7	0.340 600 0.298 600 0.303 500 0.386 600 0.420 600 0.293 600 0.422 500 0.421	E[J] V[m/sec]	3485 850 3504 860 3587 870 3671 820 3597 800 3424 820 3597 830 3686 830	3134 799 3096 810 3182 830 3341 785 3297 750 3009 785 3297 794 3373 794	2809 750 2728 761 2809 791 3035 750 3009 702 2637 750 3009 760 3090 760	2515 703 2397 714 2473 753 2750 716 2743 656 2302 716 2743 726 2820 726	2243 657 2093 669 2171 716 2486 683 2496 611 1997 683 2496 693 2569 692	1999 613 1822 625 1895 680 2243 651 2267 569 1732 650 2260 661 2338 659	635 1774 572 1587 583 1648 646 2024 620 2057 528 1491 618 2043 630 2123 627	⊕ RZR ⊕	100 m 182 m 100 m 171 m 100 m 173 m 100 m 180 m 100 m 170 m 100 m 100 m 100 m 170 m 100 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7 1.3 -0.5 1.5 -0.3 1.7 -0.5 1.5 -0.6 1.5 -0.6	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8 -3.9 2.1 -4.7 1.3 -3.9 2.1 -3.7 2.3	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7 -12.5 -4.5 -15.1 -7.1 -12.5 -4.5 -12.0 -4.0	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0 -26.4 -16.5 -32.1 -22.2 -26.4 -16.5 -25.5 -15.5 -25.5	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7 -46.1 -34.2 -56.6 -44.8 -46.2 -34.2 -44.6 -32.5 -44.7	20 20 20 20 20 20
EW EW	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15 HIT 231 88 45 DK 211 79 08 SPEED TIP 231 81 72 SPEED TIP PRO 240 66 16 SPEED TIP PRO 240 12 26	136 9.7 150 9.7 150 9.7 150 10.7 165 10.7 165 10.7 165 10.7 165	0.340 600 0.298 600 0.303 500 0.386 600 0.420 600 0.293 600 0.422 500 0.421 600 0.422	E[J] V[m/sec] E[J]	3485 850 3504 860 3587 870 3671 820 3597 800 3424 820 3597 830 3686 830 3686	3134 799 3096 810 3182 830 3341 785 3297 750 3009 785 3297 794 3373 794	2809 750 2728 761 2809 791 3035 750 3009 702 2637 750 3009 760 3090 760 3090	2515 703 2397 714 2473 753 2750 716 2743 656 2302 716 2743 726 2820 726 2820	2243 657 2093 669 2171 716 2486 683 2496 611 1997 683 2496 693 2569 692	1999 613 1822 625 1895 680 2243 651 2267 569 1732 650 2260 661 2338 659 2323	635 1774 572 1587 583 1648 646 2024 620 2057 528 1491 618 2043 630 2123 627 2103	⊕ RZR	100 m 182 m 100 m 171 m 100 m 173 m 100 m 180 m 100 m 170 m 100 m 170 m 100 m 170 m 100 m 171 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7 1.3 -0.5 1.5 -0.3 1.7 -0.5 1.5 -0.6 1.5 -0.6 1.5	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8 -3.9 2.1 -4.7 1.3 -3.9 2.1 -3.7 2.3 -3.7	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7 -12.5 -4.5 -15.1 -7.1 -12.5 -4.5 -12.0 -4.0	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0 -26.4 -16.5 -32.1 -22.2 -26.4 -16.5 -25.5 -15.5 -25.5 -15.4	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7 -46.1 -34.2 -56.6 -44.8 -46.2 -34.2 -44.6 -32.5 -44.7 -32.6	20 20 20 20 20 20 20 20
EW EW	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15 HIT 231 88 45 DK 211 79 08 SPEED TIP 231 81 72 SPEED TIP PRO 240 66 16 SPEED TIP PRO 240 12 26 HMK	136 9.7 150 9.7 150 9.7 150 10.7 165 10.7 165 10.7 165 10.7 165 10.7	0.340 600 0.298 600 0.303 500 0.386 600 0.420 600 0.293 600 0.422 500 0.421 600 0.422 600	E[J] V[m/sec]	3485 850 3504 860 3587 870 3671 820 3597 800 3424 820 3597 830 3686 830 3686 760	3134 799 3096 810 3182 830 3341 785 3297 750 3009 785 3297 794 3373 794 3373 720	2809 750 2728 761 2809 791 3035 750 3009 702 2637 750 3009 760 3090 760 3090 681	2515 703 2397 714 2473 753 2750 716 2743 656 2302 716 2743 726 2820 726 2820 644	2243 657 2093 669 2171 716 2486 683 2496 611 1997 683 2496 693 2569 692 2562 607	1999 613 1822 625 1895 680 2243 651 2267 569 2260 661 2338 659 2323 572	635 1774 572 1587 583 1648 646 2024 620 2057 528 1491 618 2043 630 2123 627 2103 539	⊕ RZR ⊕	100 m 182 m 100 m 171 m 100 m 173 m 100 m 180 m 100 m 170 m 100 m 100 m 170 m 100 m 171 m 100 m 171 m 100 m 100 m 171 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7 1.3 -0.5 1.5 -0.3 1.7 -0.5 1.5 -0.6 1.5 -0.6 1.5 -0.1	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8 -3.9 2.1 -4.7 1.3 -3.9 2.1 -3.7 2.3 -3.7 2.4 -5.2	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7 -12.5 -4.5 -15.1 -7.1 -12.5 -4.5 -12.0 -4.0 -12.0 -4.0 -16.2	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0 -26.4 -16.5 -32.1 -22.2 -26.4 -16.5 -25.5 -15.5 -25.5 -15.4 -34.0	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7 -46.1 -34.2 -56.6 -44.8 -46.2 -34.2 -44.6 -32.5 -44.7 -32.6 -59.3	20 20 20 20 20 20 20
EEW.	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15 HIT 231 88 45 DK 211 79 08 SPEED TIP 231 81 72 SPEED TIP PRO 240 66 16 SPEED TIP PRO 240 12 26 HMK 211 76 65	136 9.7 150 9.7 150 9.7 150 10.7 165 10.7 165 10.7 165 10.7 165 11.7 180	0.340 600 0.298 600 0.303 500 0.386 600 0.420 600 0.293 600 0.422 500 0.421 600 0.422 600 0.356	E[J] V[m/sec] E[J]	3485 850 3504 860 3587 870 3671 820 3597 800 3424 820 3597 830 3686 830 3686 760 3379	3134 799 3096 810 3182 830 3341 785 3297 750 3009 785 3297 794 3373 794 3373 720 3033	2809 750 2728 761 2809 791 3035 750 3009 702 2637 750 3009 760 3090 760 3090 681 2713	2515 703 2397 714 2473 753 2750 716 2743 656 2302 716 2743 726 2820 726 2820 644 2426	2243 657 2093 669 2171 716 2486 683 2496 611 1997 683 2496 693 2569 692 2562 607 2155	1999 613 1822 625 1895 680 2243 651 2267 569 1732 650 2260 661 2338 659 2323 572	635 1774 572 1587 583 1648 646 2024 620 2057 528 1491 618 2043 630 2123 627 2103 539 1700	⊕ RZR	100 m 182 m 100 m 171 m 100 m 173 m 100 m 180 m 100 m 170 m 100 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7 1.3 -0.5 1.5 -0.3 1.7 -0.6 1.5 -0.6 1.5 -0.6 1.5 -0.1 1.9	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8 -3.9 2.1 -4.7 1.3 -3.9 2.1 -3.7 2.3 -3.7 2.4 -5.2 0.8	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7 -12.5 -4.5 -15.1 -7.1 -12.5 -4.5 -12.0 -4.0 -12.0 -4.0 -16.2 -8.3	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0 -26.4 -16.5 -32.1 -22.2 -26.4 -16.5 -25.5 -15.5 -25.5 -15.4 -34.0 -24.1	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7 -46.1 -34.2 -56.6 -44.8 -46.2 -34.2 -44.6 -32.5 -44.7 -32.6 -59.3 -47.4	20 20 20 20 20 20 20 20 20
EEN	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15 HIT 231 88 45 DK 211 79 08 SPEED TIP 231 81 72 SPEED TIP PRO 240 66 16 SPEED TIP PRO 240 12 26 HMK 211 76 65 UNI Classic	136 9.7 150 9.7 150 9.7 150 10.7 165 10.7 165 10.7 165 10.7 165 11.7 180 11.7	0.340 600 0.298 600 0.303 500 0.386 600 0.420 600 0.293 600 0.422 500 0.421 600 0.422 600 0.356 600	E[J] V[m/sec]	3485 850 3504 860 3587 870 3671 820 3597 800 3424 820 3597 830 3686 760 3379 770	3134 799 3096 810 3182 830 3341 785 3297 750 3009 785 3297 794 3373 794 3373 720 3033 729	2809 750 2728 761 2809 791 3035 750 3009 702 2637 750 3009 760 3090 681 2713 689	2515 703 2397 714 2473 753 2750 716 2743 656 2302 716 2743 726 2820 726 2820 644 2426 651	2243 657 2093 669 2171 716 2486 683 2496 611 1997 683 2496 693 2569 692 2562 607 2155 614	1999 613 1822 625 1895 680 2243 651 2267 569 1732 650 2260 661 2338 659 2323 572 1914 578	635 1774 572 1587 583 1648 646 2024 620 2057 528 1491 618 2043 630 2123 627 2103 539 1700 543	⊕ RZR ⊕	100 m 182 m 100 m 171 m 100 m 173 m 100 m 180 m 100 m 170 m 100 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7 1.3 -0.5 1.5 -0.3 1.7 -0.5 1.5 -0.6 1.5 -0.6 1.5 -0.1 1.9 -0.2	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8 -3.9 2.1 -4.7 1.3 -3.9 2.1 -3.7 2.3 -3.7 2.4 -5.2 0.8 -5.0	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7 -12.5 -4.5 -15.1 -7.1 -12.5 -4.5 -12.0 -4.0 -12.0 -4.0 -16.2 -8.3 -15.8	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0 -26.4 -16.5 -32.1 -22.2 -26.4 -16.5 -25.5 -15.5 -25.5 -15.4 -34.0 -24.1 -33.1	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7 -46.1 -34.2 -56.6 -44.8 -46.2 -34.2 -44.6 -32.5 -44.7 -32.6 -59.3 -47.4 -57.7	20 20 20 20 20 20 20 20
EW EW	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15 HIT 231 88 45 DK 211 79 08 SPEED TIP 231 81 72 SPEED TIP PRO 240 66 16 SPEED TIP PRO 240 12 26 HMK 211 76 65 UNI Classic 211 91 96	136 9.7 150 9.7 150 9.7 150 10.7 165 10.7 165 10.7 165 10.7 165 11.7 180	0.340 600 0.298 600 0.303 500 0.386 600 0.420 600 0.293 600 0.422 500 0.421 600 0.422 600 0.356 600 0.356	E[J] V[m/sec] E[J]	3485 850 3504 860 3587 870 3671 820 3597 800 3424 820 3597 830 3686 760 3379 770 3468	3134 799 3096 810 3182 830 3341 785 3297 750 3009 785 3297 794 3373 794 3373 720 3033	2809 750 2728 761 2809 791 3035 750 3009 702 2637 750 3009 760 3090 760 3090 681 2713 689 2777	2515 703 2397 714 2473 753 2750 716 2743 656 2302 716 2743 726 2820 726 2820 644 2426 651 2479	2243 657 2093 669 2171 716 2486 683 2496 611 1997 683 2496 693 2569 692 2562 607 2155 614 2205	1999 613 1822 625 1895 680 2243 651 2267 569 1732 650 2260 661 2338 659 2323 572 1914 578	635 1774 572 1587 583 1648 646 2024 620 2057 528 1491 618 2043 630 2123 627 2103 539 1700 543 1725	⊕ RZR	100 m 182 m 100 m 171 m 100 m 173 m 100 m 180 m 100 m 170 m 100 m 100 m 170 m 100 m 170 m 100 m 173 m 100 m 173 m 100 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7 1.3 -0.5 1.5 -0.3 1.7 -0.6 1.5 -0.6 1.5 -0.6 1.5 -0.1 1.9	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8 -3.9 2.1 -4.7 1.3 -3.9 2.1 -3.7 2.3 -3.7 2.4 -5.2 0.8 -5.0 1.0	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7 -12.5 -4.5 -15.1 -7.1 -12.5 -4.5 -12.0 -4.0 -12.0 -4.0 -16.2 -8.3 -15.8 -7.7	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0 -26.4 -16.5 -32.1 -22.2 -26.4 -16.5 -25.5 -15.5 -25.5 -15.4 -34.0 -24.1 -33.1 -23.0	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7 -46.1 -34.2 -56.6 -44.8 -46.2 -34.2 -44.6 -32.5 -44.7 -32.6 -59.3 -47.4	20 20 20 20 20 20 20 20 20
W	231 83 23 KS 211 77 03 ID Classic 211 77 11 HIT 240 66 15 HIT 231 88 45 DK 211 79 08 SPEED TIP 231 81 72 SPEED TIP PRO 240 66 16 SPEED TIP PRO 240 12 26 HMK 211 76 65 UNI Classic	136 9.7 150 9.7 150 9.7 150 10.7 165 10.7 165 10.7 165 10.7 165 11.7 180 11.7	0.340 600 0.298 600 0.303 500 0.386 600 0.420 600 0.293 600 0.422 500 0.421 600 0.422 600 0.356 600	E[J] V[m/sec]	3485 850 3504 860 3587 870 3671 820 3597 800 3424 820 3597 830 3686 760 3379 770	3134 799 3096 810 3182 830 3341 785 3297 750 3009 785 3297 794 3373 794 3373 720 3033 729 3109	2809 750 2728 761 2809 791 3035 750 3009 702 2637 750 3009 760 3090 681 2713 689	2515 703 2397 714 2473 753 2750 716 2743 656 2302 716 2743 726 2820 726 2820 644 2426 651	2243 657 2093 669 2171 716 2486 683 2496 611 1997 683 2496 693 2569 692 2562 607 2155 614	1999 613 1822 625 1895 680 2243 651 2267 569 1732 650 2260 661 2338 659 2323 572 1914 578	635 1774 572 1587 583 1648 646 2024 620 2057 528 1491 618 2043 630 2123 627 2103 539 1700 543	⊕ RZR ⊕	100 m 182 m 100 m 171 m 100 m 173 m 100 m 180 m 100 m 170 m 100 m	-0.8 1.2 -0.6 1.4 -0.6 1.4 -0.7 1.3 -0.5 1.5 -0.3 1.7 -0.5 1.5 -0.6 1.5 -0.6 1.5 -0.1 1.9 -0.2 1.8	⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕ 4.0 ⊕	3.0 -3.8 2.3 -3.6 2.4 -3.2 2.8 -3.9 2.1 -4.7 1.3 -3.9 2.1 -3.7 2.3 -3.7 2.4 -5.2 0.8 -5.0	-2.4 -12.6 -4.5 -12.1 -4.0 -10.7 -2.7 -12.5 -4.5 -15.1 -7.1 -12.5 -4.5 -12.0 -4.0 -12.0 -4.0 -16.2 -8.3 -15.8	-12.6 -27.0 -16.9 -26.0 -16.0 -23.1 -13.0 -26.4 -16.5 -32.1 -22.2 -26.4 -16.5 -25.5 -15.5 -25.5 -15.4 -34.0 -24.1 -33.1	-28.2 -48.1 -36.0 -46.2 -34.2 -40.7 -28.7 -46.1 -34.2 -56.6 -44.8 -46.2 -34.2 -44.6 -32.5 -44.7 -59.3 -47.4 -57.7 -45.7	20 20 20 20 20 20 20 20 20

														1							
	Bullet Item No.	Weight g gr	Barrel length/ mm BC-Value ¹⁾	V 2)	0m	50m	100m	150m	200m	250m	300m	⊕ RZR ⁻	* 3)	50m	100m	150m Trajecto	200m ory (cm)	250m	300m	Ctg/ box	
	_				_							.30	0-06	5							
and Geschiege . 18				- 9		-															
REEN	EVO GREEN	8.8	600	V[m/sec]	910	863	818	774	732	691	651	\oplus	100 m	-0.9	\oplus	-2.8	-9.7	-21.2	-37.9	20	
	231 83 24	136	0.340	E[J]	3644	3277	2944	2636	2358	2101	1865	RZR	186 m	1.1	4.0	3.2	-1.8	-11.3	-25.9		
	KS	9.7	600	V[m/sec]	900	847	796	747	700	655	611	\oplus	100 m	-0.8	\oplus	-3.1	-10.6	-23.1	-41.3	20	
	211 77 70	150	0.298	E[J]	3929	3479	3073	2706	2377	2081	1811	RZR	181 m	1.2	4.0	2.9	-2.6	-13.1	-29.3		
	ID Classic	9.7	600	V[m/sec]	915	862	812	763	716	671	627	\oplus	100 m	-0.8	\oplus	-2.9	-10.0	-21.9	-39.2	20	
all Gesco _{les} and	211 77 97	150	0.303	E[J]	4061	3604	3198	2824	2486	2184	1907	RZR	185 m	1.2	4.0	3.2	-1.9	-11.8	-27.2		
REEN	ніт	10.7	500	V[m/sec]	840	804	769	734	701	668	636	\oplus	100 m	-0.6	\oplus	-3.6	-11.7	-24.8	-43.4	20	١
NEW	240 84 72	165	0.420	E[J]	3774	3458	3164	2882	2629	2387	2164	RZR	173 m	1.3	3.9	2.3	-3.9	-15.0	-31.7		
"CEN"	ніт	10.7	600	V[m/sec]	840	804	769	734	701	668	636	\oplus	100 m	-0.6	\oplus	-3.6	-11.7	-24.8	-43.4	20	
Tone tree to	231 88 43	165	0.420	E[J]	3775	3458	3164	2882	2629	2387	2164	RZR	175 m	1.4	4.0	2.5	-3.6	-14.7	-31.3		
	KS	10.7	600	V[m/sec]	860	813	769	725	683	642	603	⊕	100 m	-0.6	⊕	-3.5	-11.7	-25.2	-44.6	20	
	211 78 00	165	0.329	E[J]	3957	3536	3164	2812	2496	2205	1945	RZR	175 m	1.4	4.0	2.5	-3.6	-15.1	-32.5		
	DK	10.7	600	V[m/sec]	855	803	753	705	658	614	571	⊕	100 m	-0.6	⊕	-3.7	-12.4	-26.8	-47.7	20	
	211 78 51	165	0.293	E[J]	3911	3450	3033	2659	2316	2017	1744	RZR	171 m	1.4	4.0	2.2	-4.4	-16.8	-35.7		
NEW	SPEED TIP	10.7	600	V[m/sec]	865	828	793	758	724	691	659	⊕	100 m	-0.7	⊕	-3.2	-10.7	-22.8	-40.1	20	
	231 81 64	165	0.422	E[J]	4003	3668	3364	3074	2804	2555	2323	RZR	180 m	1.3	4.0	2.8	-2.7	-12.9	-28.2		
NEW	SPEED TIP PRO	10.7	500	V[m/sec]	870	832	795	758	723	689	655	⊕	100 m	-0.7	⊕	-3.2	-10.6	-22.7	-40.0	20	[
	240 84 73	165	0.405	E[J]	4049	3703	3381	3074	2797	2540	2295	RZR	179 m	1.2	3.9	2.7	-2.8	-13.0	-28.3		
NEW	SPEED TIP PRO		600	V[m/sec]	870	833	798	763	730	697	665	⊕	100 m	-0.7	⊕	-3.1	-10.5	-22.4	-39.4	20	
	240 12 06	165	0.422	E[J]	4049	3712	3407	3115	2851	2599	2366	RZR	182 m	1.3	4.0	2.9	-2.4	-12.3	-27.3		
	нмк	11.7	600	V[m/sec]		769	728	689	651	615	580	Ф	100 m		⊕	-4.2	-13.6		-50.5	20	
	211 77 38	180	0.356	E[J]	3838	3459	3100	2777	2479	2213	1968	RZR	166 m	1.6	4.0	1.8	-5.6	-18.7	-38.4		
	UNI Classic	11.7	600	V[m/sec]	820	778	736	696	658	620	584	⊕	100 m	-0.5	¢	-4.1	-13.2	-28.0	-49.2	20	
	211 92 18	180	0.350	E[J]	3934	3541	3169	2834	2533	2249	1995	RZR	167 m	1.5	4.0	1.9	-5.3	-18.1	-37.3	20	
	EVO		600		810									-0.4		-4.2		-28.5	-50.0	20	
		11.9		V[m/sec]		770	730	692	655	620	585	⊕ n7n	100 m		⊕		-13.5			20	
	231 54 35	184	0.366	E[J]	3904	3528	3171	2849	2553	2287	2036	RZR	166 m	1.6	4.0	1.8	-5.5	-18.6	-38.0	20	
	UNI Classic	13.0	600	V[m/sec]	770	732	695	660	625	592	560	⊕	100 m	-0.2	⊕	-4.9	-15.4	-32.2	-56.0	20	
	231 47 03	200	0.380	E[J]	3854	3483	3140	2831	2539	2278	2038	KZK	159 m	1.8	4.0	1.1	-7.4	-22.2	-44.0		
				_	_	_	-					.30	R	Bla	asei	4					
and General Pil			_				-														
REEN	EVO GREEN	8.8	600	V[m/sec]	960	912	865	819	776	733	692	\oplus	100 m	-1.0	\oplus	-2.3	-8.2	-18.2	-32.8	20	
	231 85 46	136	0.340	E[J]	4055	3660	3292	2951	2650	2364	2107	RZR	198 m	1.0	4.0	3.8	-0.2	-8.2	-20.7	20	
	DK 211 78 94	10.7 165	0.293	V[m/sec] E[J]	870 4049	817 3571	767 3147	718 2758	671 2409	626 2097	583 1818	⊕ RZR	100 m 174 m	-0.7 1.3	⊕ 4.0	-3.5 2.5	-11.8 -3.8	-25.6 -15.6	-45.6 -33.7	20	
	UNI Classic	11.7	600	V[m/sec]	860	816	774	733	693	654	617	₩ ⊕	100 m	-0.7	⊕	-3.4	-11.5	-24.6	-43.5	20	
	211 78 35	180	0.350	E[J]	4327	3895	3505	3143	2809	2502	2227	RZR	176 m	1.4	4.0	2.6	-3.4	-14.6	-31.4		
	EVO	11.9	600	V[m/sec]	840	799	759	720	682	645	610	\oplus	100 m	-0.6	\oplus	-3.7	-12.1	-25.8	-45.5	20	
	231 61 40	184	0.366	E[J]	4198	3798	3428	3084	2767	2475	2214	RZR	172 m	1.4	4.0	2.3	-4.2	-15.9	-33.5		

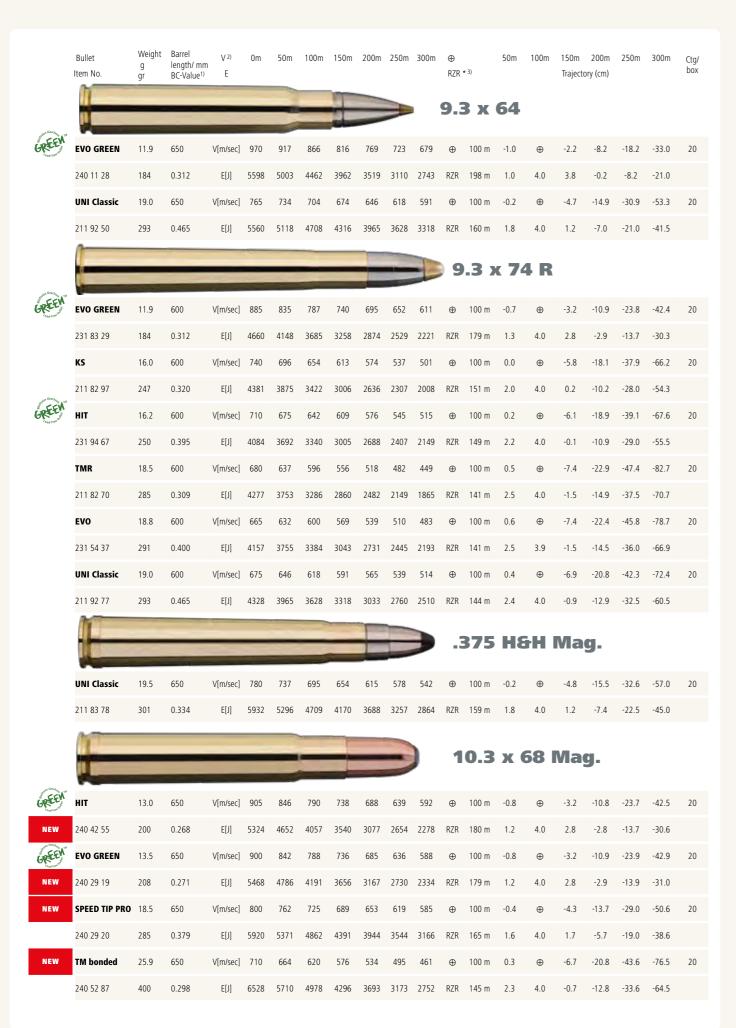
rws-ammunition.com

Warning - Fire or projection hazard. - Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.



31

	Bullet Item No.	Weight g gr	Barrel length/ mm BC-Value ¹⁾	V 2) E	0m	50m	100m	150111	200m	230111	300111	⊕ RZR ¹	* 3)	50m	100m	150m Trajecto	200m ory (cm)	250m	300m	Ctg/ box
							F					.30	00 /	Vin	. IV	lag				
EN"	EVO GREEN	8.8	650	V[m/sec]	1040	988	939	891	845	800	757	\oplus	100 m	-1.2	\oplus	-1.5	-6.2	-14.2	-26.2	20
by Am	231 83 25	136	0.340	E[J]	4759	4295	3880	3493	3142	2816	2521	RZR	218 m	0.8	4.0	4.5	1.8	-4.2	-14.2	
C.	HIT	10.7	500	V[m/sec]	950	911	873	836	800	765	731	\oplus	100 m	-1.0	\oplus	-2.2	-7.9	-17.5	-31.2	20
V	240 84 74	165	0.420	E[J]	4828	4440	4077	3739	3424	3131	2859	RZR	199 m	0.9	3.9	3.7	-0.1	-7.7	-19.4	
ÈN"	HIT	10.7	650	V[m/sec]	950	911	873	837	801	766	733	\oplus	100 m	-1.0	\oplus	-2.2	-7.9	-17.4	-31.2	20
e bull	231 88 44	165	0.420	E[J]	4828	4440	4077	3748	3433	3139	2874	RZR	201 m	1.0	4.0	3.8	0.1	-7.4	-19.1	
	KS	10.7	650	V[m/sec]	920	871	824	779	735	693	652	\oplus	100 m	-0.9	\oplus	-2.7	-9.5	-20.9	-37.3	20
	211 76 49	165	0.329	E[J]	4528	4059	3633	3247	2890	2569	2274	RZR	188 m	1.1	4.0	3.3	-1.5	-10.8	-25.3	
	DK	10.7	650	V[m/sec]	940	885	832	780	731	684	638	\oplus	100 m	-0.9	\oplus	-2.6	-9.3	-20.5	-37.1	20
	211 78 78	165	0.293	E[J]	4727	4190	3703	3255	2859	2503	2178	RZR	189 m	1.1	4.0	3.4	-1.3	-10.6	-25.1	
V	SPEED TIP	10.7	650	V[m/sec]	970	931	892	855	819	783	749	\oplus	100 m	-1.1	\oplus	-2.0	-7.4	-16.4	-29.4	20
	231 81 73	165	0.422	E[J]	5034	4637	4257	3911	3589	3280	3001	RZR	206 m	0.9	4.0	4.0	0.7	-6.3	-17.3	
V	SPEED TIP PRO	10.7	500	V[m/sec]	980	939	898	859	821	785	749	\oplus	100 m	-1.1	\oplus	-1.9	-7.2	-16.1	-29.0	20
	240 86 34	165	0.405	E[J]	5138	4717	4314	3948	3626	3297	3001	RZR	206 m	0.9	3.9	4.0	0.7	-6.3	-17.2	
V	SPEED TIP PRO	10.7	650	V[m/sec]	980	940	902	864	830	796	762	\oplus	100 m	-1.1	\oplus	-1.9	-7.1	-15.9	-28.5	20
	240 12 20	165	0.422	E[J]	5138	4727	4353	3994	3686	3390	3106	RZR	209 m	0.9	4.0	4.1	0.9	-5.8	-16.4	
	UNI Classic	11.7	650	V[m/sec]	910	865	821	778	737	697	658	\oplus	100 m	-0.9	\oplus	-2.8	-9.6	-21.0	-37.4	20
	211 76 57	180	0.350	E[J]	4844	4377	3943	3541	3178	2842	2533	RZR	187 m	1.1	4.0	3.2	-1.6	-11.0	-25.4	
	EVO	11.9	650	V[m/sec]	900	857	815	774	735	697	660	\oplus	100 m	-0.8	\oplus	-2.9	-9.8	-21.4	-37.9	20
	231 54 33	184	0.366	E[J]	4820	4370	3952	3565	3214	2891	2592	RZR	186 m	1.2	4.0	3.2	-1.8	-11.3	-25.8	
	-																			
	EVO	11.9	600	V[m/sec]	880	837	796	756	717	680	643	⊕	100 m	-0.7	⊕	-3.1	-10.5	-22.8	-40.3	20
	231 57 41	184	0.366	E[J]	4608	4168	3770	3401	3059	2751	2460	RZR	181 m	1.2	4.0	2.9	-2.6	-12.8	-28.3	
	1																			
Ob . 155			76									8 1	k 57	, JS	5					
ĒW"	EVO GREEN	9.0	600	V[m/sec]	920	871	824	778	734	691	650	8 x	1 00 m	7 JS -0.9	•	-2.7	-9.5	-20.9	-37.4	20
ÈN"	EVO GREEN 231 83 27	9.0 139	600 0.327	V[m/sec] E[J]	920 3809	871 3414	824 3055	778 2724	734 2424	691 2149						-2.7 3.3	-9.5 -1.5	-20.9 -10.8	-37.4 -25.3	20
EN" EN"											650	⊕	100 m	-0.9	⊕					20
EN" EN"	231 83 27	139	0.327	E[J]	3809	3414	3055	2724	2424	2149	650 1901	⊕ RZR	100 m 188 m	-0.9 1.1	⊕ 4.0	3.3	-1.5	-10.8	-25.3	
ŽŅ [™] ŽŅ [™]	231 83 27 HIT	139 10.4	0.327 500	E[J] V[m/sec]	3809 835	3414 791	3055 748	2724 708	2424 670	2149 632	650 1901 596	⊕ RZR ⊕	100 m 188 m 100 m	-0.9 1.1 -0.5	⊕ 4.0 ⊕	3.3 -3.9	-1.5 -12.6	-10.8 -26.8	-25.3 -47.2	
EN" EN" V	231 83 27 HIT 240 84 75	139 10.4 160	0.327 500 0.338	E[J] V[m/sec] E[J]	3809 835 3615	3414 791 3244	3055 748 2901	2724 708 2599	2424 670 2328	2149 632 2071	650 1901 596 1842	⊕ RZR ⊕ RZR	100 m 188 m 100 m 169 m	-0.9 1.1 -0.5 1.4	⊕ 4.0 ⊕ 3.9	3.3 -3.9 2.0	-1.5 -12.6 -4.8	-10.8 -26.8 -17.1	-25.3 -47.2 -35.5	20
ŽŅ [™] V	231 83 27 HIT 240 84 75 HIT	139 10.4 160 10.4 160	0.327 500 0.338 600	E[J] V[m/sec] E[J] V[m/sec]	3809 835 3615 830	3414 791 3244 786	3055 748 2901 744	2724 708 2599 704	2424 670 2328 666	2149 632 2071 628	650 1901 596 1842 592 1817	⊕ RZR ⊕ RZR ⊕ RZR	100 m 188 m 100 m 169 m 100 m	-0.9 1.1 -0.5 1.4 -0.5	⊕ 4.0 ⊕ 3.9 ⊕ 4.0	3.3 -3.9 2.0 -3.9 2.1	-1.5 -12.6 -4.8 -12.8	-10.8 -26.8 -17.1 -27.2 -17.1	-25.3 -47.2 -35.5 -47.9	20
N"	231 83 27 HIT 240 84 75 HIT 231 92 08	139 10.4 160 10.4 160	0.327 500 0.338 600 0.338	E[J] V[m/sec] E[J] V[m/sec] E[J]	3809 835 3615 830 3572	3414 791 3244 786 3203	3055 748 2901 744 2870	2724 708 2599 704 2570	2424 670 2328 666 2300	2149 632 2071 628 2045	650 1901 596 1842 592	⊕ RZR ⊕ RZR ⊕ RZR ⊕	100 m 188 m 100 m 169 m 100 m	-0.9 1.1 -0.5 1.4 -0.5 1.5	⊕ 4.0 ⊕ 3.9 ⊕	3.3 -3.9 2.0 -3.9	-1.5 -12.6 -4.8 -12.8 -4.7	-10.8 -26.8 -17.1 -27.2	-25.3 -47.2 -35.5 -47.9 -35.7	20
N"	231 83 27 HIT 240 84 75 HIT 231 92 08 SPEED TIP PRO	139 10.4 160 10.4 160 11.7	0.327 500 0.338 600 0.338 600	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec]	3809 835 3615 830 3572 770	3414 791 3244 786 3203 733	3055 748 2901 744 2870 698	2724 708 2599 704 2570 664	2424 670 2328 666 2300 630 2315	2149 632 2071 628 2045 598	650 1901 596 1842 592 1817 567	⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR RZR	100 m 188 m 100 m 169 m 100 m 170 m	-0.9 1.1 -0.5 1.4 -0.5 1.5	⊕ 4.0 ⊕ 3.9 ⊕ 4.0 ⊕	3.3 -3.9 2.0 -3.9 2.1 -4.8	-1.5 -12.6 -4.8 -12.8 -4.7 -15.2	-10.8 -26.8 -17.1 -27.2 -17.1 -31.8	-25.3 -47.2 -35.5 -47.9 -35.7 -55.3	20 20 20
ÈŅ"	231 83 27 HIT 240 84 75 HIT 231 92 08 SPEED TIP PRO 241 00 16	139 10.4 160 10.4 160 11.7	0.327 500 0.338 600 0.338 600 0.394	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec]	3809 835 3615 830 3572 770 3458	3414 791 3244 786 3203 733 3134	3055 748 2901 744 2870 698 2842	2724 708 2599 704 2570 664 2572	2424 670 2328 666 2300 630	2149 632 2071 628 2045 598 2086	650 1901 596 1842 592 1817 567 1875	⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR ⊕	100 m 188 m 100 m 169 m 100 m 170 m 100 m	-0.9 1.1 -0.5 1.4 -0.5 1.5 -0.2	⊕ 4.0 ⊕ 3.9 ⊕ 4.0 ⊕ 8.2	3.3 -3.9 2.0 -3.9 2.1 -4.8 7.5	-1.5 -12.6 -4.8 -12.8 -4.7 -15.2 1.3	-10.8 -26.8 -17.1 -27.2 -17.1 -31.8 -11.2	-25.3 -47.2 -35.5 -47.9 -35.7 -55.3 -30.6	20
N"	231 83 27 HIT 240 84 75 HIT 231 92 08 SPEED TIP PRO 241 00 16 HMK	139 10.4 160 10.4 160 11.7 180	0.327 500 0.338 600 0.338 600 0.394 600	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec]	3809 835 3615 830 3572 770 3458 790	3414 791 3244 786 3203 733 3134 745	3055 748 2901 744 2870 698 2842 702	2724 708 2599 704 2570 664 2572 661	2424 670 2328 666 2300 630 2315 620	2149 632 2071 628 2045 598 2086	650 1901 596 1842 592 1817 567 1875 545	⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR ⊕	100 m 188 m 100 m 169 m 100 m 170 m 100 m 206 m	-0.9 1.1 -0.5 1.4 -0.5 1.5 -0.2 3.9 -0.3	⊕ 4.0 ⊕ 3.9 ⊕ 4.0 ⊕ 8.2 ⊕	3.3 -3.9 2.0 -3.9 2.1 -4.8 7.5	-1.5 -12.6 -4.8 -12.8 -4.7 -15.2 1.3 -15.0	-10.8 -26.8 -17.1 -27.2 -17.1 -31.8 -11.2 -31.7	-25.3 -47.2 -35.5 -47.9 -35.7 -55.3 -30.6 -55.7	20 20 20 20
N"	231 83 27 HIT 240 84 75 HIT 231 92 08 SPEED TIP PRO 241 00 16 HMK 211 79 16 ID Classic	139 10.4 160 10.4 160 11.7 180 12.1 187 12.8	0.327 500 0.338 600 0.338 600 0.394 600 0.326 600	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec]	3809 835 3615 830 3572 770 3458 790 3776 775	3414 791 3244 786 3203 733 3134 745 3358 735	3055 748 2901 744 2870 698 2842 702 2981 696	2724 708 2599 704 2570 664 2572 661 2643 658	2424 670 2328 666 2300 630 2315 620 2326 622	2149 632 2071 628 2045 598 2086 582 2049 587	650 1901 596 1842 592 1817 567 1875 545 1797 553	 ⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR ⊕ 	100 m 188 m 100 m 169 m 100 m 170 m 100 m 206 m 100 m 160 m	-0.9 1.1 -0.5 1.4 -0.5 1.5 -0.2 3.9 -0.3 1.7 -0.2	⊕ 4.0 ⊕ 3.9 ⊕ 4.0 ⊕ 8.2 ⊕ 4.0	3.3 -3.9 2.0 -3.9 2.1 -4.8 7.5 -4.7 1.2	-1.5 -12.6 -4.8 -12.8 -4.7 -15.2 1.3 -15.0 -7.1	-10.8 -26.8 -17.1 -27.2 -17.1 -31.8 -11.2 -31.7 -21.9 -32.2	-25.3 -47.2 -35.5 -47.9 -35.7 -55.3 -30.6 -55.7 -43.9 -56.2	20 20 20
N"	231 83 27 HIT 240 84 75 HIT 231 92 08 SPEED TIP PRO 241 00 16 HMK 211 79 16	139 10.4 160 10.4 160 11.7 180 12.1 187	0.327 500 0.338 600 0.338 600 0.394 600 0.326	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J]	3809 835 3615 830 3572 770 3458 790 3776	3414 791 3244 786 3203 733 3134 745 3358	3055 748 2901 744 2870 698 2842 702 2981	2724 708 2599 704 2570 664 2572 661 2643	2424 670 2328 666 2300 630 2315 620 2326	2149 632 2071 628 2045 598 2086 582 2049	650 1901 596 1842 592 1817 567 1875 545	⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR ⊕ RZR	100 m 188 m 100 m 169 m 100 m 170 m 100 m 206 m 100 m	-0.9 1.1 -0.5 1.4 -0.5 1.5 -0.2 3.9 -0.3	⊕ 4.0 ⊕ 3.9 ⊕ 4.0 ⊕ 8.2 ⊕ 4.0 ⊕	3.3 -3.9 2.0 -3.9 2.1 -4.8 7.5 -4.7	-1.5 -12.6 -4.8 -12.8 -4.7 -15.2 1.3 -15.0	-10.8 -26.8 -17.1 -27.2 -17.1 -31.8 -11.2 -31.7 -21.9	-25.3 -47.2 -35.5 -47.9 -35.7 -55.3 -30.6 -55.7 -43.9	20 20 20 20
N"	231 83 27 HIT 240 84 75 HIT 231 92 08 SPEED TIP PRO 241 00 16 HMK 211 79 16 ID Classic 211 92 26	139 10.4 160 10.4 160 11.7 180 12.1 187 12.8 198	0.327 500 0.338 600 0.338 600 0.394 600 0.326 600 0.360	E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J] V[m/sec] E[J]	3809 835 3615 830 3572 770 3458 790 3776 775 3844	3414 791 3244 786 3203 733 3134 745 3358 735 3457	3055 748 2901 744 2870 698 2842 702 2981 696 3100	2724 708 2599 704 2570 664 2572 661 2643 658 2771	2424 670 2328 666 2300 630 2315 620 2326 622 2476	2149 632 2071 628 2045 598 2086 582 2049 587 2205	650 1901 596 1842 592 1817 567 1875 545 1797 553	⊕ RZR	100 m 188 m 100 m 169 m 100 m 170 m 100 m 206 m 100 m 160 m 160 m	-0.9 1.1 -0.5 1.4 -0.5 1.5 -0.2 3.9 -0.3 1.7 -0.2	⊕ 4.0 ⊕ 3.9 ⊕ 4.0 ⊕ 8.2 ⊕ 4.0 ⊕ 4.0 ⊕	3.3 -3.9 2.0 -3.9 2.1 -4.8 7.5 -4.7 1.2 -4.8 1.1	-1.5 -12.6 -4.8 -12.8 -4.7 -15.2 1.3 -15.0 -7.1 -15.4	-10.8 -26.8 -17.1 -27.2 -17.1 -31.8 -11.2 -31.7 -21.9 -32.2 -22.3	-25.3 -47.2 -35.5 -47.9 -35.7 -55.3 -30.6 -55.7 -43.9 -56.2 -44.3	20 20 20 20 20


please see our listings in the GECO section of this catalogue.

1) BC-Value = Ballistic coefficient 2) V = Velocity, E = Energy 3) RZR = Recommended Zero Range rws-ammunition.com other ignition sources. No smoking.

from heat, hot surfaces, sparks, open flames and

32 | AMMUNITION | RWS RWS | AMMUNITION | 33

SmartMagnum[™]

10.3 x 68 Mag.

The new dimension

The 10.3x68 Magnum sets new standards for comfortable shooting in the magnum class and expands its range of use into a completely new dimension. Independent of impact velocity, the increased bullet cross-section assures extraordinary performance on game as well as up to 81% more stopping power than common medium calibers, yet with about the same amount of recoil.

No other caliber offers the possibility of bullet weights ranging from 11 to 26 grams, thereby covering almost any hunting application. Especially when drive-hunting tough boar, the large sectional area delivers instantaneous stopping power. Also in lead-free!

HIT 13.0 g

EVOLUTION GREEN 13.5 g Satisfying shocking power - lead free

SPEED TIP PRO 18.5 q

PROFESSIONAL Highest knock-down power at all distances

SOFTPOINT BONDED 25.9 g

MANTEL For great energy delivery

Cross-sectional area plus+

This truth is no secret: A large cross-sectional area puts the brakes on game!

The large cross-sectional area of the 10.3x68 Mag. bullet delivers up to 81% more stopping power compared to ordinary medium bores with similar recoil. The large impact surface emulates the well-known rifled slug effect and reduces wounded game flight distances to a minimum - even in the lead-free version. The efficacy of this calibre is further enhanced with modern bullet designs and can be adapted to game of any

One calibre for everything

Whether after Austrian marmot or African Cape buffalo, the 10.3x68 Mag. is one calibre for everything. Bullet weights from 11 to 26 grams are practicable in no other calibre and they cover almost every hunting situation, whether in your home hunting grounds or on foreign hunting trips.

The SmartMagnum™ effect

The 10.3x68 Mag. redefines comfortable shooting in the magnum class and expands the useful range of magnum cartridges into an entirely new dimension. Regardless of impact velocity, the enlarged cross-sectional area assures an extraordinarily great shock effect in the body of the game animal. The variety of bullet weights supports the versatility of this calibre.

Uncompromising with strong partners

Even the most effective calibre with the best bullet only works when it hits where it is supposed to. For that, it needs an efficient weapons system. The Blaser R8 and the Sauer 404 are now available as two reliable solutions for maximum hunting success with the 10.3x68 Mag.

Witness this world's first in its element. Our trailer, "RWS 10.3x68 Mag. - The New Dimension", shows the full performance potential of this calibre on a hunt for a capital wild boar: rws-ammunition.com → Videos → Hunting

SHOOTING CAPS

RWS Cap for hunting and leisure wear

Camouflage cap with subdued RWS logo embroidered in 3-D. Adjustable fit. Outer material 100% cotton; brown sections are coated/waxed

RWS Hunting Cap for driven game hunts

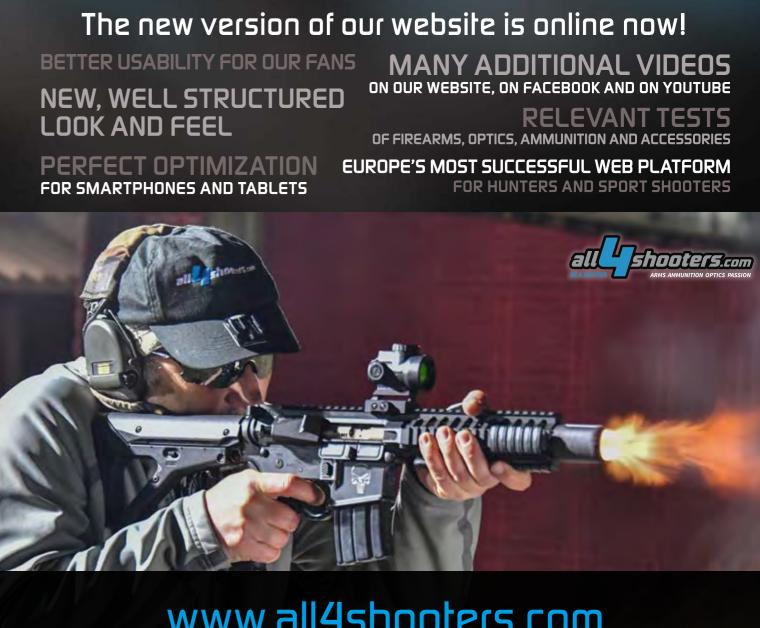
Blaze orange camouflage cap with subdued RWS logo embroidered in 3-D. Adjustable fit. Outer material: Camouflage 100% polyester, black 100% cotton

RWS Classic Cap

in black with the RWS logo in rich 3-D embroidery on the crown and the RWS motto woven into the sandwich brim, adjustable for head size. Outer material: 100% cotton

Item No.	Туре	Colour
231 62 95	RWS-Cap	Camouflage/brown
240 52 73	RWS-Cap	Blaze orange camouflage/black
231 86 72	RWS-Cap	Black

RWS RIFLE CARTRIDGE BOARD


Ideal for instructional purposes

This high-quality shadow box contains only original components from RWS. For safety purposes the cases are without power and the primers have no priming compound. The acrylic glass front is detachable, and all components can be removed for study.

The cartridge board is ideal for instructional purposes. The back of the board contains information concerning the construction and properties of the various RWS special-purpose bullets and cartridge cases.

Item No.	Size	Weight
220 77 96	ca. 45 cm x 35 cm	ca. 3 kg

www.all4hunters.com

www.all4shooters.com

TARGET ELITE PLUS

RWS Match Grade Cartridges in handloader quality

RWS TARGET ELITE PLUS stands for match cartridges in handloader quality. The cartridges are characterized by extremely finely-tuned ballistics and therefore a consistently high precision for ranges up to 1200 m. The range of calibres from .223 to .338 Lapua Magnum sets new standards in all branches of precision shooting sports.

- Highest quality Made in Germany
- Defined accuracy standard of maximum 16.9 mm to 25 mm standard deviation from test barrels
- For long-range disciplines for ranges up to 1200 m
- Large-bore cartridges prepared in handloader quality
- Specially manufactured match cases as well as selected HPBT match bullets
- Consistent point of impact from lot to lot
- Configured for best-grade match weapons with twist rates for long-range shooting

Bullet	Weight	Barrel length	V 2)	0m	50m	100m	150m	200m	250m	300m	\oplus		50m	100m	150m	200m	250m	300m	Ctg/box
Item No.	g gr	mm BC-Wert	E								RZR 3)				Traiec	tory (cm))		
	3	1)													,	, (,			
.223 Rem	-																		
TARGET ELITE PLUS	5.0	600	V[m/sec]	785	746	708	672	637	602	569	\oplus	100 m	-0.3	\oplus	-4.6	-14.6	-30.7	-53.6	20
240 38 68	77	0.373	E[J]	1541	1391	1253	1129	1014	906	809	RZR	162 m	1.7	4.0	1.4	-6.6	-20.7	-41.6	
6.5 Cree	dm	oor	•																
TARGET ELITE PLUS	8.4	610	V[m/sec]	869	841	813	786	759	733	708	\oplus	100 m	-0.3	\oplus	-3.4	-10.9	-22.5	-38.8	20
240 97 62	130	0.548	E[J]	3173	2970	2777	2595	2422	2259	2104	RZR	178 m	1.7	4.0	2.5	-2.9	-12.6	-26.8	
6.5 x 55	SE																		
TARGET ELITE PLUS	8.4	740	V[m/sec]	830	803	776	749	723	698	673	\oplus	100 m	-0.1	\oplus	-4.0	-12.3	-25.4	-43.4	20
240 97 61	130	0.548	E[J]	2895	2706	2528	2358	2198	2046	1903	RZR	168 m	1.8	3.8	1.8	-4.6	-15.7	-31.9	
.308 Win.																			
TARGET ELITE PLUS	10.0	600	V[m/sec]	890	852	815	779	744	709	676	\oplus	100 m	-0.8	\oplus	-2.9	-9.8	-21.2	-37.5	20
240 86 32	154	0.412	E[J]	3961	3630	3321	3034	2768	2513	2285	RZR	184 m	1.1	3.9	3.0	-2.0	-11.4	-25.7	
TARGET ELITE PLUS	10.9	600	V[m/sec]	810	776	743	711	680	649	620	\oplus	100 m	-0.5	\oplus	-4.0	-12.8	-27.0	-47.0	20
240 38 67	168	0.438	E[J]	3576	3282	3009	2755	2520	2296	2095	RZR	169 m	1.5	4.0	2.0	-4.8	-16.9	-34.9	
TARGET ELITE PLUS	12.3	650	V[m/sec]	796	768	741	713	687	661	636	\oplus	100 m	-0.4	\oplus	-4.0	-12.9	-27.0	-46.7	20
240 86 33	190	0.528	E[J]	3897	3627	3377	3126	2903	2687	2488	RZR	167 m	1.5	3.9	1.8	-5.1	-17.2	-35.0	
.300 Win.	Ma	g.																	
TARGET ELITE PLUS	12.3	650	V[m/sec]	875	846	817	789	761	734	707	\oplus	100 m	-0.8	\oplus	-2.9	-9.7	-20.8	-36.4	20
240 38 66	190	0.530	E[J]	4709	4402	4105	3829	3562	3313	3074	RZR	186 m	1.2	4.0	3.1	-1.7	-10.8	-24.4	
.338 Lap	oua	Mā	ag.																
TARGET ELITE PLUS	19.4	650	V[m/sec]	780	759	739	719	699	680	661	\oplus	100 m	-0.4	\oplus	-4.1	-13.0	-26.9	-46.1	20
240 51 20	300	0.708	E[J]	5901	5588	5297	5015	4739	4485	4238	RZR	168 m	1.6	4.0	1.9	-4.9	-16.8	-34.0	

RIMFIRE CARTRIDGES

The ammunition counts

RWS rimfire cartridges have been successful in the competitive target sector for many years and have scores of victories at the club, international and Olympic levels. To further these successes, RWS work with top shots and proven experts to continuously improve the basis upon which RWS is always making improvements.

Not only are the cartridges continually improved and submitted to the highest technical standards of performance, the design of the packaging is also very well thought out. The clear separation of RWS rimfire cartridges into product lines makes it easier to choose their products. A decades-long experience in loading ammunition is the right cartridge for the desired application. In addition, a classification of target cartridges by means of stars has been introduced to signify their relative precision and performance.

The pictograms on the packaging indicate the quantity, the bullet

weight, whether the use is intended for pistol or rifle, and the cali-

bre.

Stands for cartridges of highest quality and performance for the High End sector

PROFESSIONAL LINE

Features high performance cartridges for competition and training

SPORT LINE

Features reliable training cartridges for price-conscious shooters

FIELD LINE

Contains cartridges intended for special applications.

PREMIUM LINE

Thanks to its top performance and absolute reliability, every single one of the RWS branded rimfire products proves its first-class quality every day. Whether for shooting in international or club competitions, training or in special applications, RWS rimfire cartridges stand for the highest reliability and accuracy.

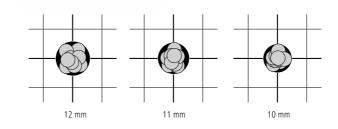
RWS is a partner and sponsor of

the German Shooting Sport

the Swiss Shooting

the French Shooting

Shooting Federation


PREMIUM LINE

Highest quality and accuracy for elite sport

R 50

- The cartridge of choice for numerous Olympic champions and world record holders
- · Matchless precision and reliability due to specially coordinated production processes
- Each batch is inspected several times and tested thoroughly with regard to ballistics, gas pressure and dispersion pattern
- Series for series with components that are matched with each other and inspected several times
- Consistent speed
- Ideal for the entire area of small bore match gun, benchrest and free pistol shooting
- Calibre: .22 long rifle
- Lead bullet, 2.6 g, V₀ 330 m/sec (barrel length: 65 cm)

Sample shooting results: 10 shots / 50 m with RWS R 50

R 100

- Top quality cartridge with excellent shooting performance and accuracy
- Preferred by a lot of internationally successful competition shooters
- High velocity in supersonic range
- Recommended as simple rifle cartridge for all disciplines at 50 und 100 m
- Calibre: .22 long rifle
- Lead bullet, 2.6 g, V₀ 345 m/sec (barrel length: 65 cm)

SPECIAL MATCH

- Very good quality and accuracy
- Reducing the error rate in competition and training
- Recommended for the entire area of small bore guns, free pistols and sport pistols
- Calibre: .22 long rifle
- Lead bullet, 2.6 g, V₀ 330 m/sec (barrel length: 65 cm)

Item No.	Calibre	Туре	Bullet	Weight g	Barrel Length mm	V _o	Velocity m/sec V ₅₀	V ₁₀₀	E ₀	Energy joules E ₅₀	E ₁₀₀	Ctg/ box
213 41 87	.22 l.r.	R 50	LRN	2.6	650	330	294	271	142	113	95	50
213 41 95	.22 l.r.	R 100	LRN	2.6	650	345	304	277	155	120	100	50
213 42 33	.22 l.r.	Special Match	LRN	2.6	650	330	294	271	142	113	95	50

PROFESSIONAL LINE

High accuracy for competition and training

RIFLE MATCH S

- Fast cartridge for training and competitions
- Supersonic velocity
- Top accuracy at 50 m as well as 100 m
- Good alternative for sensitive barrels
- Training cartridge for R 100
- Calibre: .22 long rifle
- Lead bullet, 2.6 g, V₀ 345 m/sec (barrel length: 65 cm)

PISTOL MATCH SR

- Top grade pistol ammunition
- Softer recoil thanks to less priming material and new propellant
- Uniform and minimal muzzle jump due to a very consistent burning characteristic
- Reduced muzzle impulse, smaller muzzle flash
- Perfect combination of hardly noticeable recoil and soft shot development
- Calibre: .22 long rifle
- Lead bullet, 2.6 g, V₀ 260 m/sec (barrel length: 13 cm)

RIFLE MATCH

- The ace of guns
- Special cartridge for rifles
- Best possible velocity development
- Very good performance
- Attractive price
- Calibre: .22 long rifle
- Lead bullet, 2.6 g, V_0 330 m/sec (barrel length: 65 cm)

PISTOL MATCH

- Reliable function and high accuracy
- Ideal for sporting and standard pistols at 25 m
- Extremely soft shot release
- Outstanding internal ballistic values
- Less impact on arm muscles, less effort required
- Convincing price/performance ratio
- Calibre: .22 long rifle
- Lead bullet, 2.6 g, V_0 275 m/sec (barrel length: 13 cm)

Item No.	Calibre	Туре	Bullet	Weight g	Barrel Length mm	V _o	Velocity m/sec V ₅₀	V ₁₀₀	E ₀	Energy joules E ₅₀	E ₁₀₀	Ctg/ box
231 43 72	.22 l.r.	Rifle Match S	LRN	2.6	650	345	304	277	155	120	100	50
213 42 25	.22 l.r.	Rifle Match	LRN	2.6	650	330	294	271	142	113	95	50
231 77 99	.22 l.r.	Pistol Match SR	LRN	2.6	130	260	244	229	88	77	68	50
213 24 43	.22 l.r.	Pistol Match	LRN	2.6	130	275	257	241	98	86	76	50

SPORT LINE

Cartridges for starting out and for intensive shooting

TARGET RIFLE

- · Universal cartridge with unbeatable quality
- · Consistently outstanding shot performance
- Balanced velocity
- Proven training cartridge
- Calibre: .22 long rifle
- Lead bullet, 2.6 g, V₀ 330 m/sec (barrel length: 65 cm)

CLUB

- · Satisfying precision
- Training ammunition for beginners
- Faultless performance from many weapons
- Inexpensive training cartridges
- Calibre: .22 long rifle
- Lead bullet, 2.6 g, V_0 330 m/sec (barrel length: 65 cm)

TARGET PISTOL

- Fast training cartridge
- · Precise and reliable
- The cartridge functions reliably even in sensitive pistols and semi-automatic rifles
- Calibre: .22 long rifle
- Lead bullet, 2.6 g, V₀ 285 m/sec (barrel length: 13 cm)

SEMI AUTO

- Special powder load optimised for use in semi-automatic rifles and pistols
- The cartridges are made and inspected to RWS quality standards
- Made in Germany for good accuracy and reliable functioning
- Lead bullet: 2.6 g
- V_0 355 m/sec +/- 10m/sec (barrel length: 65 cm)
- V₀ 330 m/sec (barrel length: 42 cm)
- V₀ 295 m/sec (barrel length: 15 cm)

Item No.	Calibre	Туре	Bullet	Weight q	Barrel Length mm	V _o	Velocity m/sec V ₅₀	V ₁₀₀	E _o	Energy joules E ₅₀	Fano	Ctg/ box
				9		- 0	*50	* 100	-0	-50	□100	
213 24 78	.22 l.r.	Target Rifle	LRN	2.6	650	330	294	271	142	113	95	50
213 27 10	.22 l.r.	Target Pistol	LRN	2.6	130	285	262	244				50
213 28 85	.22 l.r.	Club*	LRN	2.6	650	330	295	270	142	113	95	50
231 86 01	.22 l.r.	Semi Auto	LRN	2.6	650	355	309	281	164	124	103	50

* limited availability rws-ammunition.com

FIELD LINE

Designed for successful hunting and special applications

SUBSONIC HP

- Specialty for low-noise shooting
- Special precision cartridges for hunting
- The velocity is always under sound barrier
- Suitable for guns with moderators
- Good function in single loaders
- The hollow point guarantees certain effectiveness for small game and predators
- Calibre: .22 long rifle
- Lead bullet, 2.6 g, V₀ 315 m/sec (barrel length: 65 cm)

Z LANG

- Perfection at close range
- Designed especially for shooting at close range
- Extremely suitable for indoor shooting
- Quiet and gentle recoil
- Characterized by particularly low speed
- Totally reliable
- Calibre: .22 long rifle
- Lead bullet, 1.9 g, V₀ 235 m/sec (barrel length: 65 cm)

For more rimfire cartridges, please see our listings in the GECO section of this catalogue

Item No. Calibre Type	Bullet	Weight g	Barrel Length mm	V _o	Velocity m/sec V ₅₀	V ₁₀₀	E ₀	Energie joules E ₅₀	E ₁₀₀	sighting- in distance	point of impac mounted 5cr 25 m			100 m	
213 26 64 .22 l.r. Subsonic	LHP	2.6	650	315	285	264	129	106	89	50 m	1.0	⊕	-8.5	-25.1	box 50
213 27 53 .22 l.r. Z lang	LRN	1.9	650	235	219	204	52	46	40						50

FIELD LINE

Designed for successful hunting and special applications

HIGH VELOCITY

- Copper coated solid lead bullet for hunting small game
- Excellent impact and penetration with a tangible increase of 80 m/sec in speed
- Suitable for long rifles and insert barrels
- Calibre: .22 long rifle
- Lead bullet, 2.6 g, V₀ 385 m/sec (barrel length: 65 cm)

MAGNUM FMJ

- The high velocity is responsible for extremely high energy release at the target
- Extended trajectory of up to 100 m is exactly right for hunting
- Minimal damage to the game minimal damage to the hide
- Calibre: .22 Magnum
- Lead bullet, 2.6 g, V_0 595 m/sec (barrel length: 60 cm) (Full metal jacket)

HIGH VELOCITY HP

- Enhanced power and expansion on small game and vermin via its copper-plated lead hollow point bullet
- Very good penetration due to a tangible increase of
- 80 m/sec in speed
- Suitable for long rifles and insert barrels
- Calibre: .22 long rifle
- Lead bullet, 2.6 g, V₀ 385 m/sec (barrel length: 65 cm)

MAGNUM SP

- The high velocity is responsible for extremely high energy release and superior penetration at the target
- Flat trajectory of up to 100 m, optimum for hunting small game and prey
- Good penetration due to the hollow point
- Calibre: .22 Magnum
- Lead bullet, 2.6 g, V₀ 595 m/sec (barrel length: 60 cm) (Hollow Point Bullet)

Item No.	Calibre	Туре	Bullet	Weight	Barrel Length		Velocity m/sec			Energie joules			oint of impa mounted 5c				
				g	mm	V _o	V ₅₀	V ₁₀₀	E ₀	E ₅₀	E ₁₀₀	sighting- in distance	25 m	50 m	75 m	100 m	Ctg/ box
213 24 86	.22 l.r.	High Velocity	LRN	2.6	650	385	328	293	193	140	112	50 m	1.5	\oplus	-7.2	-20.8	50
213 24 94	.22 l.r.	High Velocity	LHP	2.6	650	385	328	293	193	140	112	50 m	1.5	\oplus	-7.2	-20.8	50
213 30 83	.22 Mag	Magnum	FMJ	2.6	600	595	495	418	460	319	227	100 m	-0.2	2.5	2.7	\oplus	50
213 30 75	.22 Mag	Magnum	SHP	2.6	600	595	495	418	460	319	227	100 m	-0.2	2.5	2.7	\oplus	50

44 | AMMUNITION | RWS RWS | AMMUNITION | 45

AIR GUN PELLETS

The ammunition counts

As a leading supplier of air gun ammunition, the name RWS guarantees excellent quality and technology worldwide. Decades of experience in the production of diabolo pellets assure an impressive lead on the market. RWS air gun pellets are characterised by their particularly skilful material composition, the special surface finish and optimised weight. This guarantees outstanding precision. All RWS match pellets are manufactured in the classical diabolo shape. The head, the skirt and the special shape of the pellet head plate are decisive factors for the ideal stabilisation of the pellet in the barrel and also for sharp outlines of the pellet holes. Close production

tolerances combined with strict testing conditions allow the optimisation of the precision – here, quality has been redefined. The range offers a wide selection of precision projectiles for matches and training as well as numerous custom shapes for special applications. Five clearly structured product lines make it easier to make the right choice for each application. Whether for shooting in international competitions or at club level, in training or for popular sport – RWS air gun pellets always stand for absolute reliability and precision.

RWS is a partner and sponsor of

the Swiss Shooting

the French Shooting

RWS HYPERMATCH

The first lead-free premium match quality air gun pellet from RWS

- Made in the classic match diabolo shape
- The ideal air gun pellet for lead-free training and competition
- · Outstanding accuracy for a lightweight tin pellet
- 7.5 mm shot group size
- The high-tech tin alloy is absolutely lead-free, environmentally safe and easy on the barrel.
- Available in calibre 4.5 mm
- Weight: 0.33 g / 5.1 gr
- 250-count round tin

Туре	Item No.	Calibre mm	Pellet weight g	Head diameter in mm	Pellet length mm	Single pack	Sales pack.
HYPERMATCH / 0.33 g	231 88 69	4.5	0.33	4.50	5.6	250	2500

PREMIUM LINE

Premium match pellets highest quality for top sports

RWS R 10 MATCH, RWS R 10 MATCH PLUS

In shooting circles, R10 MATCH pellets have long been known as packages. high-end pellets with the greatest precision. Selected material quality, tight production tolerances and professional precision control ensure the top quality of the R10. Absolute dimensional consistency in length and weight are a matter of course, as are the tightest, uniform shooting patterns and sharply punched out holes.

The best R10 MATCH pellets are selected for the R10 MATCH PLUS • 500-count round tin or 100-count competition package

and are carefully packaged in the specially produced competition

R10 MATCH pellets are the top choice of the world's elite shooters as well as ambitious club shooters interested in high performance.

- Available in calibre 4.5 mm
- Weight: 0.45 g and 0.53 g

RWS R 10 MATCH PLUS

R 10 MATCH PLUS

Kaliber 4.5 mm / Caliber .177

R 10 MATCH

R 10 MATCH

RWS R 10 MATCH

Kaliber 4.5 mm / Caliber .177

Kaliber 4.5 mm / Caliber .177

R 10 MATCH PLUS / 0.53 g 213 52 64 4.5 0.53 4.50 5.5 100 500 R 10 MATCH / 0.53 g 213 73 56 4.5 0.53 4.48 5.5 500 500 213 73 64 4.5 0.53 4.49 5.5 500 500 213 59 06 4.5 0.53 4.50 5.5 500 500 213 73 72 4.5 0.53 4.51 5.5 500 500 R 10 MATCH / 0.45 g 231 54 40 4.5 0.45 4.48 5.4 500 5000 231 54 41 4.5 0.45 4.49 5.4 500 5000 R 10 MATCH / 0.45 g 231 54 42 4.5 0.45 4.50 5.4 500 5000	Туре	Item No.	Calibre mm	Pellet weight g	Head diameter in mm	Pellet length mm	Single pack.	Sales pack.
R 10 MATCH / 0.53 g 213 73 64 4.5 0.53 4.49 5.5 500 5000 213 59 06 4.5 0.53 4.50 5.5 500 5000 213 73 72 4.5 0.53 4.51 5.5 500 5000 231 54 40 4.5 0.45 4.48 5.4 500 5000 R 10 MATCH / 0.45 g	R 10 MATCH PLUS / 0.53 g	213 52 64	4.5	0.53	4.50	5.5	100	500
R 10 MATCH / 0.53 g 213 59 06 4.5 0.53 4.50 5.5 500 5000 213 73 72 4.5 0.53 4.51 5.5 500 5000 231 54 40 4.5 0.45 4.48 5.4 500 5000 R 10 MATCH / 0.45 g		213 73 56	4.5	0.53	4.48	5.5	500	5000
213 59 06 4.5 0.53 4.50 5.5 500 5000 213 73 72 4.5 0.53 4.51 5.5 500 5000 231 54 40 4.5 0.45 4.48 5.4 500 5000 231 54 41 4.5 0.45 4.49 5.4 500 5000 R 10 MATCH / 0.45 q	D 10 MATCH / 0 E2 ~	213 73 64	4.5	0.53	4.49	5.5	500	5000
231 54 40 4.5 0.45 4.48 5.4 500 5000 231 54 41 4.5 0.45 4.49 5.4 500 5000 R 10 MATCH / 0.45 q	k 10 MAICH / 0.55 g	213 59 06	4.5	0.53	4.50	5.5	500	5000
231 54 41 4.5 0.45 4.49 5.4 500 5000 R 10 MATCH / 0.45 q		213 73 72	4.5	0.53	4.51	5.5	500	5000
R 10 MATCH / 0.45 q		231 54 40	4.5	0.45	4.48	5.4	500	5000
231 54 42 4.5 0.45 4.50 5.4 500 5000	D 40 MATCH (0 45 m	231 54 41	4.5	0.45	4.49	5.4	500	5000
	R 10 MATCH / 0.45 g	231 54 42	4.5	0.45	4.50	5.4	500	5000
231 54 43 4.5 0.45 4.51 5.4 500 5000		231 54 43	4.5	0.45	4.51	5.4	500	5000

PROFESSIONAL LINE

Powerful MEISTERKUGELN precision for competition and training

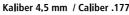
RWS MEISTERKUGELN

For decades RWS MEISTERKUGELN have been part of every ambitious shooter's equipment. Significant improvements in production technology have led to yet another enhancement in quality. New material compositions and optimised surface treatment have created a permanently bright and shiny appearance. The production of accurate dimension and weight is subject to continuous checks.

- Available in calibres 4.5 mm and 5.5 mm
- Four different head diameters
- Weight: 0.45 g, 0.53 g and 0.91 g
- 250-count and 500-count round tin

MEISTERKUGELN

Kaliber 4.5 mm / Caliber .177



MEISTERKUGELN

RWS MEISTERKUGELN / 0.91 G

MEISTERKUGELN

RWS MEISTERKUGELN / 0.45 G

MEISTERKUGELN

Especially for	
pistol shooters	

Туре	Item No.	Calibre mm	Pellet weight g	Head diameter in mm	Pellet length mm	Single pack.	Sales pack.
	231 58 54	4.5	0.53	4.48	5.5	500	5000
	213 60 23	4.5	0.53	4.49	5.5	500	5000
MEISTERKUGELN / 0.53 g	213 59 65	4.5	0.53	4.50	5.5	500	5000
	213 60 31	4.5	0.53	4.51	5.5	500	5000
	213 60 07	4.5	0.53	4.50	5.5	250	2500
MEISTERKUGELN / 0.91 g	213 59 30	5.5	0.91		6.4	500	2500
	213 59 22	4.5	0.45	4.48	5.4	500	5000
MEISTERKUGELN / 0.45 g	231 54 45	4.5	0.45	4.49	5.4	500	5000
MEISTERROGELN / 0.45 g	231 54 46	4.5	0.45	4.50	5.4	500	5000
	231 50 20	4.5	0.45	4.51	5.4	500	5000

Air gun pellets can be purchased without licence rws-ammunition.com

FIELD LINE

Specific shapes - designed for special applications

RWS SUPERMAG

The super heavy RWS SUPERMAG weighs considerably more and is especially suited for shooting with heavier air guns at middle distances.

- Available in calibre 4.5 mm
- Weight: 0.60 g
- 500-count round tin

SUPERMAG

Kaliber 4.5 mm / Caliber 177

RWS SUPER FIELD

The RWS SUPER FIELD is especially suited to Pre-charged Pneumatic Air Rifles. These heavy air gun pellets with round heads are impressive at middle to far distances due to their precision and performance.

- Available in calibres 4.5 mm and 5.5 mm
- Weight: 0.54 g and 1.03 g
- 500-count round tin

SUPER FIELD

Kaliber 4.5 mm / Caliber 177

SUPER FIELD

Kaliber 5.5 mm / Caliber .22

RWS SUPERDOME

The SUPERDOME has an English bulldog shape with a round head with a striking, grooved rear section. It is best suited for hunting at middle distances.

- Available in calibres 4.5 mm, 5.5 mm and 6.35 mm
- Weight: 0.54 g, 0.94 g and 2.00 g
- 200-count and 500-count round tin

SUPERDOME

SUPERDOME

SUPERDOME

Kaliber 6.35 mm / Caliber .25

Туре	Item No.	Calibre mm	Pellet weight g	Head diameter in mm	Pellet length mm	Single pack.	Sales pack.
SUPERMAG	213 67 59	4.5	0.60		6.0	500	5000
	231 71 62	4.5	0.54	4.51	6.6	500	5000
SUPER FIELD	231 71 64	4.5	0.54	4.52	6.6	500	5000
SUPER FIELD	231 71 63	5.5	1.03	5.51	7.51	500	2500
	231 71 65	5.5	1.03	5.52	7.51	500	2500
	213 67 91	4.5	0.54		5.7	500	5000
SUPERDOME	213 68 05	5.5	0.94		7.0	500	2500
	231 72 63	6.35	2.00		10.0	200	1000

RWS SUPERPOINT EXTRA

Thanks to its conical head form, amazing penetration capabilities are realized with the RWS SUPERPOINT EXTRA. It also has the necessary precision thanks to the optimum weight distribu-

- Available in calibres 4.5 mm and 5.5 mm
- Weight: 0.53 g and 0.94 g
- 500-count round tin

SUPERPOINT EXTRA

Kaliber 4,5 mm / Caliber ,177

SUPERPOINT EXTRA

Kaliber 5.5 mm / Caliber .22

RWS SUPER-H-POINT

The RWS SUPER-H-POINT is a diabolo pellet with a hollow point, characterised by high deformation capability and strong penetration.

- Available in calibres 4.5 mm, 5.5 mm and 6.35 mm
- Weight: 0.45 g, 0.92 g and 1.62 g
- 200-count and 500-count round tin

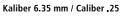
SUPER-H-POINT

FIELD LINE

Specific shapes - designed for special applications

SUPER-H-POINT

SUPER-H-POINT


Kaliber 5.5 mm / Caliber .22

SUPER-H-POINT

Туре	Item No.	Calibre mm	Pellet weight g	Pellet length mm	Single pack.	Sales pack.
SUPERPOINT EXTRA	213 67 16	4.5	0.53	7.0	500	5000
SUPERPOINT EXTRA	213 67 24	5.5	0.94	8.7	500	2500
	213 66 78	4.5	0.45	5.5	500	5000
SUPER-H-POINT	213 66 86	5.5	0.92	8.0	500	2500
	231 72 62	6.35	1.62	8.7	200	1000

Air gun pellets can be purchased without licence. rws-ammunition.com

FIELD LINE

Lead-free air gun pellets for maximum velocity, accuracy and effectiveness at pest control

RWS HYPERMAX

RWS HYPERMAX air gun pellets in the Field Line impress with up to 25 - 30% higher velocity, best performance and great accuracy. Made from solid tin, they are absolutely lead-free, environmentally safe and easy on the barrel since leading is impossible.

The highlights at a glance:

- Between 25 30% faster than standard pellets of the same
- Conical point for excellent penetration
- High-tech tin alloy
- · Ultra light weight
- Brilliant High Speed finish
- Lead-free and therefore eco-friendly and easy on the barrel
- Very good accuracy

Applications: Silhouette shooting, small pest control

Suitable for air guns and air pistols.

- Available in calibres 4.5 mm and 5.5 mm
- Weight: 0.34 g and 0.64 g
- 200-count and 150-count round tin

RWS HYPERDOME

RWS HYPERDOME air gun pellets are light high-speed tin pellets with great penetration and extraordinary accuracy. They are absolutely lead-free, environmentally safe and easy on the barrel since leading is impossible.

The highlights at a glance:

- · Very lightweight and therefore faster than standard pellets of the same calibre
- Bulldog head for excellent penetration
- High-tech tin alloy
- · Brilliant High Speed finish
- Lead-free and therefore eco-friendly and easy on the barrel
- Delivers very tight groups

Applications: Silhouette shooting, small pest control

Suitable for air guns and air pistols.

- Available in calibres 4.5 mm and 5.5 mm
- Weight: 0.36 g and 0.71 g
- 200-count and 150-count round tin

Туре	Item No.	Calibre mm	Pellet weight g	Pellet length mm	Single pack.	Sales pack.
HYPERMAX	231 81 61	4.5	0.34	7.10	200	2000
HIPERWAA	231 81 96	5.5	0.64	8.60	150	1500
HVDEDDOME	231 81 62	4.5	0.36	6.45	200	2000
HYPERDOME	231 81 63	5.5	0.71	7.80	150	1500

See page 45 for the lead-free premium match quality air gun pellet from RWS.

FIELD LINE

Designed primarily for hunting and silhouette shooting

RWS POWER PIERCING

The RWS POWER PIERCING is a smoothskirted air gun pellet with an extremely sharp lead hollow point.

The highlights at a glance:

- Maximum impact and great energy transfer into the target
- Stark mushrooming action on impact
- Very good accuracy
- · Applications: Silhouette shooting and small pest control

- Suitable for air guns
- Available in calibres 4.5 mm and 5.5 mm
- Weight: 0.58 g and 0.89 g
- 200-count and 100-count blister pack

Kaliber 4.5 mm / Caliber .177

Kaliber 5.5 mm / Caliber .22

RWS POWER BALL

The RWS POWER BALL features a coated steel ball embedded into the pellet.

The highlights at a glance:

- · Great energy transfer and effectiveness
- · Very good penetration
- Approaching match accurcy
- · Applications: Silhouette shooting and small pest control

- · Suitable for air guns
- Available in calibre 4.5 mm
- Weight: 0.61 g
- 200-count blister pack

POWER BALL

Kaliber 4.5 mm / Caliber .177

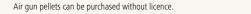
RWS POWER BOLT

The RWS POWER BOLT is a super heavy air gun pellet designed for long-range shooting.

The highlights at a glance:

- Sophisticated design for the maximum in power and depth of penetration
- · Applications: Field target shooting and small
- Suitable for high-powered air guns (> 7.5 J)

- Available in calibres 4.5 mm and 5.5 mm
- Weight: 0.92 g and 1.6 g
- 150-count and 100-count blister pack


POWER BOLT

Kaliber 5.5 mm / Caliber .22

Туре	Item No.	Calibre mm	Pellet weight g	Pellet length mm	Single pack.	Sales pack.
POWER PIERCING	240 00 64	4.5	0.58	8.8	200	1200
POWER PIERCING	231 86 03	5.5	0.89	9.4	100	600
POWER BALL	231 86 05	4.5	0.61	7.1	200	1200
POWER BOLT	231 88 71	4.5	0.92	8.9	150	900
POWER BOLT	231 88 70	5.5	1.60	9.1	100	600

52 | AMMUNITION | RWS RWS | AMMUNITION | 53

RWS Field Kits offer the perfect opportunity to test the various RWS now have the ability to test five different pellet designs to find the air gun pellets for the varied demands of Field Target, silhouette and pest control. All air gun pellets in the Field Line have diverse designs and head profiles. With our RWS Field Kits in 4.5 and 5.5 mm, you

one that will best match your personal needs and the individual peculiarities of your air gun.

FIELD KIT CAL. 4.5 MM

- Contains 1000 FIELD LINE air gun pellets:
- 200-count tin Superdome 0.54 g
- 200-count tin Superpoint Extra 0.53 g
- 200-count tin Super Field 0.54 g
- 200-count tin Power Ball 0.61 g
- 200-count tin Supermag 0.60 g

FIELD KIT CAL. 5.5 MM

Contains 500 FIELD LINE air gun pellets:

- 100-count tin Superdome 0.94 g
- 100-count tin Superpoint Extra 0.94 g
- 100-count tin Super Field 1.03 g
- 100-count tin Power Piercing 0.89 g
- 100-count tin Super-H-Point 0.92 g

FIELD KIT COUNTER DISPLAYS IN 4.5 MM AND 5.5 MM

These counter displays each contain 20 Field Kits in calibre 4.5 or 5.5 mm. The display is perfectly suited for presentation of Field Kits on the sales counter or in the shop window.

SPORT LINE

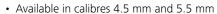
Proven training pellets – for getting started in shooting

RWS CLUB

Excellent results can be achieved with this lighter variant of a smooth pellet. The lighter design ensures increased velocity.

CLUB

Kaliber 4.5 mm / Caliber .177


- Available in calibre 4.5 mm
- Weight: 0.45 g

• 500-count round tin

RWS HOBBY

The balanced and reliable quality at a low price makes the ribbed RWS HOBBY highly attractive for hobby shooters.

- Weight: 0.45 g and 0.77 g
- 500-count round tin

RWS TRAINING

The RWS TRAINING expands the SPORT LINE range with a heavier version of the well-known, smooth CLUB pellet. It is an inexpensive option for training and its ballistic behavior is identical to the RWS MATCH pellets in this weight class.

- Available in calibre 4.5 mm
- Weight: 0.53 g
- 500-count round tin

TRAINING

Kaliber 4.5 mm / Caliber .177

Туре	Item No.	Calibre mm	Pellet weight g	Pellet length mm	Single pack.	Sales pack.
CLUB	213 61 98	4.5	0.45	5.2	500	5000
новву	213 64 06	4.5	0.45	5.3	500	5000
повы	213 64 30	5.5	0.77	6.4	500	2500
TRAINING	231 88 72	4.5	0.53	5.5	500	5000

RWS DIABOLO BASIC

The RWS DIABOLO BASIC are well suited for use in all air guns. With flawless precision and accuracy, they fulfil all basic requirements at a very favourable price.

- Available in calibre 4.5 mm
- Weight: 0.45 g
- 500-count round tin

DIABOLO BASIC

Kaliber 4.5 mm / Caliber .177

Туре	Item No.	Calibre mm	Pellet weight g	Pellet length mm	Single pack.	Sales pack.
DIABOLO BASIC	231 50 92	4.5	0.45	5.2	500	5000

BASIC LINE

Shooting fun at a low price

RWS PELLET SAVER

Everyone has this problem: Pellet tins just cannot be transported securely once the sealing tape has been removed. The practical RWS Pellet Saver keeps the tins securely closed.

Now with an optimised fit for secure transport and easy replenishment.

Item No.	Туре	
231 37 63	RWS Pellet Saver	

For more air gun pellets, please see our listings in the GECO section of this catalogue.

RWS COMPETITION BOX

The RWS Competition Box has been specially developed for competition shooters. Simply pour approx. 100 pellets out of a traditional tin into the Competition Box, shake it briefly, and the pellets are optimally positioned for use. The air gun pellets can then be easily removed one at a time and afterwards reliably transported to avoid damage. The shooter also has an instant overview of the number of pellets that have already been fired. The Competition Box offers – in combination with the RWS R 10 match pellets – the best pre-requisite for excellent accuracy in competitive marksmanship.

Item No.	Туре
231 12 48	RWS Competition Box (without content)

Air gun pellets can be purchased without licence. rws-ammunition.com

TEST RANGE

for the optimal combination of weapon and ammunition

RWS test range

The perfect combination of ammunition and rifle or pistol is decisive for the success of the target shooter. Therefore the requirements placed on the precision of competition barrels and ammunition are high, especially as each barrel has its own characteristics. Consequently it is important to match the barrel with different batches of ammunition in order to find the optimal batch.

For more than 25 years, experienced target shooters have used the facilities of the RWS test shooting range at our factory in Fuerth to select the ideal target ammunition. We offer a service to our dealers to synchronise their clients' weapons with the most suitable RWS ammunition.

Ideal conditions

The test shooting range is indoors and the results are not influenced by the weather. Five separate lanes equipped with target transport systems and electronic targeting systems are available, and testing is possible by clamping the barrel at distances of 10, 15, 25 and 50

The ammunition is included in the low user fee. Qualified expert staff supervise the tests and provide helpful advice.

There are two ways in which an order can be handled:

The shooter comes to the test range in person or arranges for his weapons to be sent to the range. If the shooter wishes to send the weapons then this must be done via a dealer in his home country and all the appropriate import/export paperwork must be completed and approved by us before the weapons can be sent. After

Christian Thomas looks forward to welcoming you

batch testing, the ammunition will be forwarded to the appropriate country's importer and then invoiced (including the low user fee) and sent to the shooter's dealer of choice.

Any shooters wishing to take advantage of this facility should initially contact their RWS distributor to arrange this.

To arrange a personal appointment at the test range, please contact

phone: +49 911 79 30-156 +49 911 79 30-282

E-mail: Christian.Thomas@ruag.com

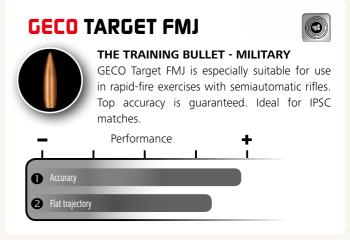
You can test ammunition for the following weapons	Recommended ammunition Item No.	Type	Unit (minimum quantity)	Weight kg
RWS rimfire cartridges				
	213 41 95	.22 l.r. R 100	5,000	19
Small bore rifles .22 l.r.	213 41 87	.22 l.r. R 50	5,000	19
	213 42 33	.22 l.r. Special Match	5,000	19
	213 41 87	.22 l.r. R 50	5,000	19
Rapid fire, sport and free pistols .22 l.r.	213 42 33	.22 l.r. Special Match	5,000	19
	231 77 99	.22 I.r. Pistol Match SR	5,000	19
RWS air gun pellets				
Competition air guns 4.5 mm		R 10 MATCH 0.53 g	10,000 500 round tin	6
Rifle/pistol		R 10 MATCH HV 0.45 g	10,000 500 round tin	6

GECO-AMMUNITION.COM

GECO - ALL YOU NEED


GECO stands for a modern assortment of cartridges for all hunting and sport applications. Over 100 years of experience in development and production is inside every cartridge. Active hunters and shooters also find that GECO quality comes at an attractive price-to-performance ratio. GECO cartridges fulfil all important requirements for modern ammunition, thus the inspiration for the new GECO slogan.

60 | AMMUNITION | GECO **GECO** | AMMUNITION | 61



Bullet Item No	Weight Gramm Grain	Barrel length mm BC-Value 1)	V 2) E	0m	50m	100m	150m	200m	250m	300m	⊕ RZR *	3)	50m	100m	150m	200m	250m	300m	Ctg/box
.223	3 Rem.																		
Expres	s 3.6	600	V[m/sec]	1010	926	848	773	703	636	574	\oplus	100 m	-1.1	\oplus	-2.4	-8.8	-20.3	-37.9	20
231 78	33 56	0.202	E[J]	1836	1543	1294	1076	890	728	593	RZR	192 m	0.9	4.0	3.6	-0.9	-10.4	-26.0	
.243	3 Win.																		
Expres	s 4.9	600	V[m/sec]	1020	964	910	857	807	759	713	\oplus	100 m	-1.2	⊕	-1.8	-6.9	-15.8	-29.0	20
231 78 3	34 76	0.305	E[J]	2549	2277	2029	1799	1596	1411	1246	RZR	210 m	0.8	4.0	4.3	1.1	-5.8	-16.9	
тм	6.8	600	V[m/sec]	880	834	789	745	703	663	624	\oplus	100 m	-0.7	\oplus	-3.2	-10.9	-23.5	-41.7	20
212 34 (01 105	0.335	E[J]	2633	2365	2117	1887	1680	1495	1324	RZR	179 m	1.3	4.0	2.8	-2.9	-13.5	-29.7	
6.5	x 55 SE																		
тм	10.1	600	V[m/sec]	770	723	679	635	594	554	516	⊕	100 m	-0.2	\oplus	-5.2	-16.5	-34.7	-61.0	20
231 78	15 156	0.308	E[J]	2994	2640	2328	2036	1782	1550	1345	RZR	156 m	1.9	4.0	0.8	-8.5	-24.7	-49.0	
Plus	10.1	600	V[m/sec]	750	704	660	618	577	538	501	⊕	100 m	0.0	⊕	-5.6	-17.7	-37.1	-65.1	20
231 78 3	39 156	0.308	E[J]	2841	2503	2200	1929	1681	1462	1268	RZR	152 m	2.0	4.0	0.3	-9.7	-27.2	-53.2	
) Win.		.,																
Expres		600	V[m/sec]	940	893	847	803	760	719	679	⊕	100 m	-1.0	⊕	-2.5	-8.7	-19.3	-34.5	20
231 78 E		0.344	E[J]	3711	3349	3013	2708	2426	2171	1936	RZR	194 m	1.1	4.0	3.6	-0.7	-9.2	-22.4	20
Z31 76.	9.1	600	V[m/sec]	910	846	785	727	671	618	567	NZN ⊕	100 m	-0.8	4.0 ⊕	-3.2	-11.1	-24.4	-44.2	20
231 78 2		0.247	E[J]	3768	3257	2804	2405	2049	1738	1463	RZR	178 m	1.2	4.0	2.8	-3.1	-14.4	-32.3	20
Plus	9.7	600	V[m/sec]	850	802	755	710	667	625	586	⊕	100 m	-0.6	⊕	-3.7	-12.3	-26.4	-46.9	20
231 78		0.316	E[J]	3504	3120	2765	2445	2158	1895	1665	RZR	172 m	1.4	4.0	2.3	-4.3	-16.4	-34.8	
) WSM	0.510	-[2]	3304	3120	2703	2113	2130	1033	1005	NZIV	172 111	11	4.0	2.3	1.5	10.4	54.0	
Expres		650	V[m/sec]	940	893	847	803	760	719	679	⊕	100 m	-1.0	⊕	-2.5	-8.7	-19.3	-34.5	20
231 78 E		0.344	E[J]	3711	3349	3013	2708	2426	2171	1936	RZR	194 m	1.1	4.0	3.6	-0.7	-9.2	-22.4	20
Z31 76.	9.1	650	V[m/sec]	945	879	817	757	700	645	593	NZN ⊕	100 m	-0.9	4.0 ⊕	-2.8	-9.8	-21.9	-40.0	20
231 78		0.247	E[J]	4063	3516	3037	2607	2230	1893	1600	RZR	186 m	1.1	4.0	3.3	-1.8	-11.9	-27.9	20
7 x		0.247	۲[۱]	4005	3310	3037	2007	2230	1033	1000	ILLI	100111	1.1	4.0	5.5	1.0	11.5	21.3	
		600) (f. / 1	070	04.4	760	700	650	644	F.C.C		100	0.5		2.6	42.4	26.2	47.4	20
ZERO	8.2	600	V[m/sec]	870	814	760	708	659	611	566	⊕ pzp	100 m	-0.6	⊕	-3.6	-12.1	-26.3	-47.1	20
231 88		0.274	E[J]	3103	2717	2368	2055	1781	1531	1313	RZR	173 m	1.4	4.0	2.4	-4.1	-16.3	-35.0	20
TM	10.7	600	V[m/sec]	800	759	720	681	644	608	574	⊕ pzp	100 m	-0.4	⊕	-4.4	-14.0	-29.6	-51.9	20
231 85		0.360	E[J]	3424	3082	2773	2481	2219	1978	1763	RZR	164 m	1.6	4.0	1.6	-6.0	-19.6	-39.9	
	57 R																		
ZERO	8.2	600	V[m/sec]	820	766	714	664	616	571	527	\oplus	100 m	-0.4	\oplus	-4.4	-14.4	-30.9	-55.0	20
231 88		0.274	E[J]	2757	2406	2090	1808	1556	1337	1139	RZR	163 m	1.6	4.0	1.6	-6.4	-20.9	-42.9	
TM	10.7	600	V[m/sec]	750	711	673	636	600	566	533	⊕	100 m	-0.1	⊕	-5.4	-16.8	-35.1	-61.0	20
212 33 !		0.360	E[J]	3009	2705	2423	2164	1926	1714	1520	RZR	154 m	1.9	4.0	0.6	-8.9	-25.2	-49.1	
	m Rem.																		
ZERO	8.2	650	V[m/sec]	980	919	861	805	752	700	651	⊕	100 m	-1.0	\oplus	-2.3	-8.3	-18.7	-34.2	20
231 88 (0.274	E[J]	3938	3463	3039	2657	2319	2009	1738	RZR	197 m	1.0	4.0	3.8	-0.3	-8.7	-22.1	
Expres		650	V[m/sec]	890	852	816	780	746	712	679	⊕	100 m	-0.8	⊕	-2.9	-9.8	-21.1	-37.3	20
231 78		0.418	E[J]	3961	3630	3329	3042	2783	2535	2305	RZR	186 m	1.2	4.0	3.1	-1.8	-11.1	-25.2	
TM	10.7	650	V[m/sec]	870	827	785	745	706	668	631	⊕ n7n	100 m	-0.7	⊕	-3.3	-11.0	-23.6	-41.8	20
231 45		0.360	E[J]	4049	3659	3297	2969	2667	2387	2130	RZR	179 m	1.3	4.0	2.8	-2.9	-13.5	-29.7	20
Plus	11.0	650	V[m/sec]	866	825	785	746	709	672	637	⊕ p7p	100 m	-0.7	⊕	-3.3	-11.0	-23.6	-41.6	20
231 78		0.375	E[J]	4125	3743	3389	3061	2765	2484	2232	RZR	178 m	1.3	4.0	2.7	-3.0	-13.6	-29.7	
	Rem.																		
TM	10.7	600	V[m/sec]	830	788	748	709	671	634	598	\oplus	100 m	-0.5	\oplus	-3.9	-12.6	-26.8	-47.2	20
211 75	84 165	0.360	E[J]	3686	3322	2993	2689	2409	2150	1913	RZR	170 m	1.5	4.0	2.1	-4.6	-16.8	-35.2	

	Bullet Item No.	Weight Gramm Grain	Barrel length mm BC-Value 1)	V 2) E	0m	50m	100m	150m	200m	250m	300m	⊕ RZR *	3)	50m	100m	150m	200m	250m	300m	Ctg/b
	7 x 64																			
AD FREE LLET	ZERO	8.2	600	V[m/sec]	940	881	824	770	718	668	620	\oplus	100 m	-0.9	\oplus	-2.7	-9.6	-21.2	-38.3	20
	231 88 19	127	0.274	E[J]	3623	3182	2784	2431	2114	1830	1576	RZR	188 m	1.1	4.0	3.3	-1.5	-11.1	-26.2	
	Express	10.0	600	V[m/sec]	880	843	806	771	737	703	670	\oplus	100 m	-0.8	\oplus	-3.0	-10.1	-21.8	-38.4	20
	231 78 40	155	0.418	E[J]	3872	3553	3248	2972	2716	2471	2245	RZR	184 m	1.2	4.0	3.0	-2.1	-11.7	-26.3	
	тм	10.7	600	V[m/sec]	840	798	757	718	679	642	607	\oplus	100 m	-0.6	\oplus	-3.7	-12.2	-26.0	-45.8	20
	212 33 12	165	0.360	E[J]	3775	3407	3066	2758	2467	2205	1971	RZR	172 m	1.4	4.0	2.3	-4.2	-16.0	-33.8	
	Plus	11.0	600	V[m/sec]	830	790	751	713	677	641	607	\oplus	100 m	-0.5	\oplus	-3.8	-12.5	-26.5	-46.5	20
	231 78 41	170	0.375	E[J]	3789	3433	3102	2796	2521	2260	2026	RZR	171 m	1.5	4.0	2.2	-4.4	-16.4	-34.4	
	7 x 65	R																		
AD FREE LLET	ZERO	8.2	600	V[m/sec]	890	833	778	726	676	627	581	\oplus	100 m	-0.7	\oplus	-3.3	-11.3	-24.7	-44.4	20
	231 88 20	127	0.274	E[J]	3248	2845	2482	2161	1874	1612	1384	RZR	177 m	1.3	4.0	2.7	-3.3	-14.7	-32.3	
	тм	10.7	600	V[m/sec]	800	759	720	681	644	608	574	\oplus	100 m	-0.4	\oplus	-4.4	-14.0	-29.6	-51.9	20
	212 26 85	165	0.360	E[J]	3424	3082	2773	2481	2219	1978	1763	RZR	164 m	1.6	4.0	1.6	-6.0	-19.6	-39.9	
	Plus	11.0	600	V[m/sec]	810	771	732	695	659	624	590	\oplus	100 m	-0.4	\oplus	-4.2	-13.4	-28.3	-49.5	20
	231 78 42	170	0.375	E[J]	3609	3269	2947	2657	2389	2142	1915	RZR	167 m	1.6	4.0	1.9	-5.3	-18.2	-37.4	
	.308 W	/in.																		
AD FREE LLET	ZERO	8.8	600	V[m/sec]	870	803	739	679	621	566	515	\oplus	100 m	-0.6	\oplus	-3.9	-13.2	-28.8	-52.2	20
	231 88 23	136	0.229	E[J]	3330	2837	2403	2029	1697	1410	1167	RZR	168 m	1.4	4.0	2.1	-5.2	-18.9	-40.3	
	Express	10.7	600	V[m/sec]	825	788	752	717	683	649	617	\oplus	100 m	-0.5	\oplus	-3.8	-12.4	-26.3	-46.0	20
	231 78 04	165	0.404	E[J]	3641	3322	3025	2750	2496	2253	2037	RZR	171 m	1.5	4.0	2.2	-4.4	-16.2	-33.9	
	тм	11.0	600	V[m/sec]	790	742	696	652	610	569	530	\oplus	100 m	-0.3	\oplus	-4.8	-15.4	-32.6	-57.4	20
	212 34 28	170	0.305	E[J]	3433	3028	2664	2338	2047	1781	1545	RZR	159 m	1.7	4.0	1.1	-7.5	-22.7	-45.5	
	Plus	11.0	600	V[m/sec]	780	727	677	629	582	538	497	\oplus	100 m	-0.2	\oplus	-5.2	-16.6	-35.3	-62.5	20
	231 78 05	170	0.274	E[J]	3346	2907	2521	2176	1863	1592	1359	RZR	156 m	1.8	4.0	0.8	-8.5	-25.2	-50.5	
	.30-06																			
D FREE	ZERO	8.8	600	V[m/sec]	920	851	785	722	662	605	551	\oplus	100 m	-0.8	\oplus	-3.2	-11.1	-24.7	-45.0	20
	231 88 21	136	0.229	E[J]	3724	3186	2711	2294	1928	1611	1336	RZR	178 m	1.2	4.0	2.8	-3.1	-14.7	-33.0	
	Express	10.7	600	V[m/sec]	864	826	789	753	718	683	650	\oplus	100 m	-0.7	\oplus	-3.2	-10.8	-23.1	-40.8	20
	231 78 06	165	0.404	E[J]	3994	3650	3330	3033	2758	2496	2260	RZR	179 m	1.3	4.0	2.7	-2.8	-13.2	-28.8	
	тм	11.0	600	V[m/sec]	840	791	743	697	653	610	569	\oplus	100 m	-0.5	\oplus	-3.9	-12.9	-27.6	-49.0	20
	212 33 20	170	0.305	E[J]	3881	3441	3036	2672	2345	2047	1781	RZR	169 m	1.5	4.0	2.1	-4.9	-17.6	-37.0	
	Plus	11.0	600	V[m/sec]	835	780	728	677	629	583	539	\oplus	100 m	-0.5	\oplus	-4.2	-13.7	-29.4	-52.4	20
	231 78 07	170	0.274	E[J]	3835	3346	2915	2521	2176	1869	1598	RZR	166 m	1.5	4.0	1.9	-5.7	-19.4	-40.4	
	.300 W	/in. N	lag.																	
AD FREE LLET	ZERO	8.8	650	V[m/sec]	1010	936	866	799	736	675	618	\oplus	100 m	-1.1	\oplus	-2.2	-8.2	-18.8	-34.8	20
	231 88 22	136	0.229	E[J]	4488	3855	3300	2809	2383	2005	1680	RZR	197 m	0.9	4.0	3.8	-0.2	-8.8	-22.8	
	Express	10.7	650	V[m/sec]	970	929	889	850	812	775	740	\oplus	100 m	-1.1	\oplus	-2.0	-7.5	-16.6	-29.9	20
	231 78 08	165	0.404	E[J]	5034	4617	4228	3865	3527	3213	2930	RZR	205 m	0.9	4.0	4.0	0.6	-6.5	-17.8	
	тм	11.0	650	V[m/sec]	950	896	845	795	748	701	657	\oplus	100 m	-1.0	\oplus	-2.5	-8.8	-19.6	-35.3	20
	211 75 76	170	0.305	E[J]	4964	4415	3927	3476	3077	2703	2374	RZR	193 m	1.0	4.0	3.6	-0.8	-9.5	-23.3	
	Plus	11.0	650	V[m/sec]	940	881	824	770	718	668	620	\oplus	100 m	-0.9	\oplus	-2.7	-9.6	-21.2	-38.3	20
	231 78 09	170	0.274	E[J]	4860	4269	3734	3261	2835	2454	2114	RZR	188 m	1.1	4.0	3.3	-1.5	-11.1	-26.2	

1) BC-Value = Ballistic coefficient 2) V = Velocity, E = Energy 3) RZR = Recommended Zero Range

64 | AMMUNITION | **GECO** GECO | AMMUNITION | 65

	Bullet Item No.	Weight Gramm	Barrel length mm	V 2) E	0m	50m	100m	150m	200m	250m	300m	⊕ RZR * :	2)	50m	100m	150m	200m	250m	300m	Ctg/box
		Grain JS	BC-Value 1)									IVZIV .	5)							
										=										
REE	ZERO	9.0	600	V[m/sec]	900	829	760	695	636	581	530	⊕	100 m	-0.7	⊕	-3.6	-12.2	-27.0	-49.0	20
	231 89 47	139	0.225	E[J]	3645	3093	2599	2174	1820	1519	1264	RZR	173 m	1.3	4.0	2.5	-4.2	-16.9	-36.9	
	TM	12.0	600	V[m/sec]	790	731	674	621	570	521	476	⊕	100 m	-0.2	⊕	-5.2	-16.8	-36.0	-64.3	20
	212 33 39	185	0.245	E[J]	3745	3206	2726	2314	1949	1629	1359	RZR	155 m	1.8	4.0	0.7	-8.9	-26.1	-52.4	
	Plus	12.7	600	V[m/sec]	750	709	670	631	595	559	525	0	100 m	-0.1	⊕	-5.4	-17.0	-35.5	-61.9	20
	231 78 45	196	0.346	E[J]	3572	3192	2851	2528	2248	1984	1750	RZR	154 m	1.9	4.0	0.6	-9.0	-25.5	-50.0	
	8 x 57	JRS																		
REE	ZERO	9.0	600	V[m/sec]	850	779	712	651	594	542	494	\oplus	100 m	-0.5	\oplus	-4.4	-14.6	-31.7	-57.3	20
	231 89 48	139	0.225	E[J]	3251	2731	2281	1907	1588	1322	1098	RZR	163 m	1.5	4.0	1.6	-6.6	-21.8	-45.4	
	тм	12.0	600	V[m/sec]	760	702	647	595	545	498	455	\oplus	100 m	0.0	\oplus	-5.9	-18.7	-39.8	-71.0	20
	212 33 98	185	0.245	E[J]	3466	2957	2512	2124	1782	1488	1242	RZR	150 m	2.0	4.0	0.1	-10.8	-29.9	-59.1	
	Plus	12.7	600	V[m/sec]	710	670	632	595	560	526	493	\oplus	100 m	0.2	\oplus	-6.4	-19.7	-40.9	-70.9	20
	231 78 46	196	0.346	E[J]	3201	2851	2536	2248	1991	1757	1543	RZR	147 m	2.2	4.0	-0.4	-11.8	-30.9	-59.0	
	9.3 x 6	2																		
REE	ZERO	11.9	600	V[m/sec]	870	806	746	688	632	580	530	\oplus	100 m	-0.6	\oplus	-3.8	-12.8	-28.0	-50.6	20
	231 89 50	184	0.241	E[J]	4504	3865	3311	2816	2377	2002	1671	RZR	170 m	1.4	4.0	2.2	-4.8	-18.0	-38.5	
	Express	16.5	600	V[m/sec]	760	724	689	655	622	591	560	\oplus	100 m	-0.2	\oplus	-5.0	-15.8	-32.9	-57.0	20
	231 78 47	255	0.398	E[J]	4765	4324	3916	3539	3192	2882	2587	RZR	158 m	1.9	4.0	1.0	-7.7	-22.8	-44.9	
	тм	16.5	600	V[m/sec]	760	709	660	612	568	525	484	\oplus	100 m	-0.1	\oplus	-5.6	-17.8	-37.6	-66.3	20
	231 18 42	255	0.277	E[J]	4765	4147	3594	3090	2662	2274	1933	RZR	152 m	1.9	4.0	0.4	-9.8	-27.6	-54.4	
	Plus	16.5	600	V[m/sec]	740	698	658	619	581	545	510	\oplus	100 m	0.0	\oplus	-5.7	-17.8	-37.2	-64.9	20
	231 78 48	255	0.335	E[J]	4518	4019	3572	3161	2785	2450	2146	RZR	152 m	2.0	4.0	0.3	-9.8	-27.2	-52.8	
	9.3 x 7	4 R																		
REE	ZERO	11.9	600	V[m/sec]	825	764	705	648	595	545	497	\oplus	100 m	-0.4	\oplus	-4.6	-15.0	-32.4	-58.1	20
	231 89 51	184	0.241	E[J]	4050	3473	2957	2498	2106	1767	1470	RZR	161 m	1.6	4.0	1.4	-7.0	-22.4	-46.1	
	тм	16.5	600	V[m/sec]	740	690	641	595	551	509	470	\oplus	100 m	0.1	\oplus	-6.1	-19.1	-40.2	-70.9	20
	212 33 47	255	0.277	E[J]	4518	3928	3390	2921	2505	2137	1822	RZR	149 m	2.1	4.0	-0.1	-11.1	-30.2	-58.9	
	Plus	16.5	600	V[m/sec]	730	688	648	610	573	537	502	\oplus	100m	0.1	\oplus	-5.9	-18.5	-38.5	-67.1	20
	231 79 44	255	0.335	E[J]	4396	3905	3464	3070	2709	2379	2079	RZR	150 m	2.1	4.0	0.0	-10.5	-28.6	-55.1	

For more centrefire rifle cartridges, please see our listings in the RWS section of this catalogue.

Shoot better with constant practice

The GECO SPORT cartridge is designed especially for practice and In addition, this plating minimizes barrel heating as well as intensive competition. Thanks to its balanced loading, the GECO SPORT offers a comfortable shooting experience. The precision-engineered hollow-point bullet guarantees outstanding accuracy, even at you off the practice range! This cartridge is not suitable for hunting longer ranges. The nickel-plated jacket reduces metal fouling in the applications. bore to assure consistent muzzle velocities.

cleaning protocols. The smart 50-round packaging offers a good price-to-performance ratio. Now there are no more excuses to keep

Bullet Item No.	Weight Gramm Grain	Barrel length mm BC-Value 1)	V 2) E	0m	50m	100m	150m	200m	250m	300m	⊕ RZR * 3)		50m	100m	150m	200m	250m	300m	Ctg/box
7 x 64																			
Sport	9.0	600	V[m/sec]	916	870	825	782	740	699	660	\oplus	100 m	-0.9	\oplus	-2.7	-9.5	-20.7	-37.0	50
240 70 00	139	0.345	E[J]	3776	3406	3063	2752	2464	2199	1960	RZR	188 m	1.1	4.0	3.3	-1.5	-10.7	-25.0	
.308 Win.																			
Sport	9.5	600	V[m/sec]	860	809	760	711	664	620	579	\oplus	100 m	-0.6	\oplus	-3.6	-12.1	-26.2	-46.8	50
240 70 01	147	0.300	E[J]	3513	3109	2744	2401	2094	1826	1592	RZR	172 m	1.4	4.0	2.3	-4.2	-16.3	-34.8	
.30-06																			
Sport	9.5	600	V[m/sec]	940	886	834	784	735	687	642	\oplus	100 m	-0.9	\oplus	-2.6	-9.2	-20.3	-36.7	50
240 70 02	147	0.300	E[J]	4197	3729	3304	2920	2566	2242	1958	RZR	190 m	1.1	4.0	3.4	-1.2	-10.3	-24.7	
.300 Win. Mag.																			
Sport	9.5	650	V[m/sec]	1012	955	900	848	797	748	700	\oplus	100 m	-1.2	\oplus	-1.9	-7.2	-16.3	-29.9	50
240 71 78	147	0.300	E[J]	4865	4332	3848	3416	3017	2658	2328	RZR	207 m	0.8	4.0	4.1	0.8	-6.3	-17.9	
8 x 57 JS																			
Sport	12.1	600	V[m/sec]	810	769	729	690	653	616	581	\oplus	100 m	-0.4	\oplus	-4.2	-13.6	-28.7	-50.3	50
240 70 03	187	0.359	E[J]	3969	3578	3215	2880	2580	2296	2042	RZR	166 m	1.6	4.0	1.8	-5.5	-18.6	-38.3	
9.3 x 62																			
Sport	12.7	600	V[m/sec]	867	812	760	709	661	614	570	\oplus	100 m	-0.6	\oplus	-3.6	-12.1	-26.3	-47.0	50
240 70 04	196	0.281	E[J]	4773	4187	3668	3192	2774	2394	2063	RZR	173 m	1.4	4.0	2.4	-4.1	-16.2	-34.9	

Frequent practice at the range is a must; plus, it is a lot of fun! The GECO Target FMJ line makes economical shooting possible thanks to its practical 50-pack. The GECO Target FMJ bullet is especially suitable for rapid fire in semiautomatic firearms. Top accuracy is guaranteed, something that is appreciated especially by IPSC com-

petitors. With its especially attractive price-to-performance ratio, the GECO Target FMJ line is especially well-suited to shooters with intense training schedules. The tombac jacket of the GECO Target FMJ bullet starkly reduces barrel fouling, thereby increasing cleaning intervals. Now nothing stands between you and success!

Bullet Item No223 Rem.	Weight Gramm Grain	Barrel length mm BC-Wert ¹⁾	V ²⁾	0m	50m	100m	150m	200m	250m	300m	⊕ RZR * 3)		50m	100m	150m	200m	250m	300m	Ctg/box
Target FMJ	3.6	600	V[m/s]	1010	948	889	832	778	726	676	\oplus	100 m	-1.1	\oplus	-2.0	-7.6	-17.0	-31.3	50
231 75 61	55	0.275	E[J]	1837	1618	1423	1247	1090	949	822	RZR	198 m	0.7	3.7	3.5	-0.2	-7.9	-20.3	
Target FMJ	4.1	600	V[m/s]	950	903	857	813	770	728	688	\oplus	100 m	-1.0	\oplus	-2.4	-8.5	-18.6	-33.4	50
231 75 62	63	0.345	E[J]	1864	1683	1516	1364	1224	1095	977	RZR	192 m	0.9	3.8	3.3	-0.9	-9.1	-22.1	
7.62 x 39																			
Target FMJ	8.0	600	V[m/s]	740	700	662	625	589	555	522	\oplus	100 m	0.0	\oplus	-5.6	-17.5	-36.5	-63.5	50
231 78 12	124	0.355	E[J]	2245	2009	1797	1602	1422	1263	1117	RZR	153 m	2.0	4.0	0.4	-9.4	-26.4	-51.4	
.308 Win.																			
Target FMJ	9.5	600	V[m/s]	865	826	787	750	714	679	645	\oplus	100 m	-0.7	\oplus	-3.3	-10.9	-23.3	-41.1	50
240 70 05	147	0.392	E[J]	3573	3258	2957	2686	2434	2201	1987	RZR	179 m	1.3	4.0	2.7	-2.9	-13.3	-29.1	

www.all4shooters.com

The new version of our website is online now!

BETTER USABILITY FOR OUR FANS

NEW, WELL STRUCTURED **LOOK AND FEEL**

MANY ADDITIONAL VIDEOS ON OUR WEBSITE, ON FACEBOOK AND ON YOUTUBE

OF FIREARMS, OPTICS, AMMUNITION AND ACCESSORIES

PERFECT OPTIMIZATION FOR SMARTPHONES AND TABLETS

EUROPE'S MOST SUCCESSFUL WEB PLATFORM FOR HUNTERS AND SPORT SHOOTERS

www.all4hunters.com

HANDGUN CARTRIDGES

NEW ACTION EXTREME

Thanks to its specialized combination of materials and design, this monolithic copper bullet with enclosed hollow point delivers extreme energy transfer.

HEXAGON

Our hollow point Hexagon bullet is primarily designed to deliver top accuracy and any expansion is seen as merely coincidental. This non-expanding bullet unites the advantages of a hollow-point design with a sealed bullet base for optimal accuracy.

FMJ (FULL METAL JACKET)

The full metal jacket bullet may be economically produced thanks to its simple construction. It is especially interesting for the shooter on an intense training programme.

ENCAPSULATED FULL METAL JACKET

This is a further development of the standard FMJ bullet and features a sealed bullet base. This bullet stands out with reduced smoke and noxious emissions, making it particularly suitable for use in indoor ranges.

JACKETED HOLLOW POINT

The hollow point bullet is the perfect choice when absolute accuracy is a must. Top shooters have relied upon this bullet style for years.

SOFT POINT

The soft point bullet is, by design, a compromise between full metal jacket economy and hollow point performance.

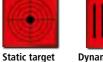
COPPER-PLATED LEAD ROUND NOSE

Adds to the advantages of the lead round nose bullet by reducing smoke and noxious emissions.

LEAD ROUND NOSE

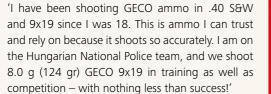
The traditional lead round nose bullet gives an excellent fit to the rifling and protects the barrel by reducing bore friction.

WAD CUTTER


The wadcutter bullet's shoulder stabilisation gives excellent accuracy even at very low velocities.

Health issues can arise due to lead exposure for both the shooter and range personnel. Thanks to the lead-free GreenFire primer technology, used for years in NATO-specification ammunition, lead can

no longer contaminate the atmosphere around the shooter. Additionally, the sealed bullet base keeps lead particles from being released.


Dynamic target shooting

In order to simplify the choice of cartridge, each package fea-

Ball Giray

Games, Service Pistol, 2015

Standard Division, 2010

Winner of the World Police and Fire

3rd place, IPSC European Championship,

György Batki

9mm LUGER

NEW

GECO - REVOLVE	Item No.	Calibre	Bullet	Bul weig g		Primer	Barrel Length (mm)*	V_0		locity I/sec) V ₂₅	V ₅₀	E ₀		nergy oules) E ₂₅	E ₅₀	Ctg/ box
	212 76 01	.32 S&W long WC	Wad Cutter	6.5	100	Anvil	150	222	215	205	190	160	150	137	117	50
	231 77 16	.38 Special	Full Metal Jacket Flat Nose	10.2	158	Anvil	150	295	287	281	278	435	421	401	373	50
	231 77 17	.38 Special	Jacketed Hollow Point	10.2	158	Anvil	150	295	285	273	255	444	415	379	331	50
	231 77 18	.38 Special	Lead Round- Nose	10.2	158	Anvil	150	275	269	263	260	386	369	353	345	50
Letting But	231 91 00	.38 Special	Lead Round- Nose, copper- plated	10.2	158	&	150	275	269	263	260	386	369	353	345	50
	231 75 36	.38 Special WC	Wad Cutter	9.6	146	Anvil	150	265	255	241	230	337	311	278	233	50
	231 77 20	.357 Magnum	Full Metal Jacket Flat Nose	10.2	158	Anvil	150	395	386	374	354	796	761	713	638	50
	231 77 21	.357 Magnum	Jacketed Hollow Point	10.2	158	Anvil	150	395	381	363	337	796	741	672	581	50
	240 99 86	.357 Magnum	Hexagon	11.7	180	Anvil	150	340	323	309	286	676	610	558	479	50
	240 29 31	.44 Rem. Mag.	Full Metal Jacket Flat Nose	14,9	230	Anvil	150	368	362	354	342	1009	979	936	873	50
	231 77 22	.44 Rem. Mag.	Soft Point	15.6	240	Anvil	150	445	435	420	395	1540	1471	1372	1213	50
NEW	240 81 24	.44 Rem. Mag.	Hexagon	19.4	300	Anvil	150	277	275	270	267	744	734	707	692	50

	Item No.	Calibre	Bullet		ullet eight gr	Primer	Barrel Length (mm)*	V_0		elocity m/sec) V ₂₅	V ₅₀	E ₀		nergy oules) E ₂₅	E ₅₀	Ctg/ box
GECO - PISTO	L CA	RTRI	DGES													
	212 32 07	6.35 Browning	Full Metal Jacket	3.2	49	Anvil	60	208	205	201	193	69	67	65	60	50
	231 77 03	7.65 Browning	Full Metal Jacket	4.75	73	Anvil	150	300	294	285	273	214	205	194	177	50
	231 77 05	9mm Browning kurz	Full Metal Jacket	6.15	95	Anvil	150	300	294	287	276	277	266	253	234	50
	231 85 55	9mm Makarov	Full Metal Jacket	6.15	95	Anvil	150	310	304	296	283	288	277	263	240	50

	Item No.	Calibre	Bullet	Bullet weigh g		Primer	Barrel Length (mm) *	V ₀		elocity n/sec) V ₂₅	V ₅₀	E ₀		nergy oules) E ₂₅	E ₅₀	Ctg/ box
	240 81 23	9mm Luger	Action EXTREME	7.0	108	Anvil	150	400	391	377	356	560	535	497	444	20
	231 86 29	9mm Luger	Full Metal Jacket	8.0	124	Anvil	125	360	350	337	319	518	490	454	407	50
Green Fried J. J. Common J	231 82 21	9mm Luger	Encapsulated Full Metal Jacket	8.0	124	%	125	360	351	340	325	518	493	462	423	50
Creation of the Creation of th	231 81 95	9mm Luger	Lead Round-Nose, copper-plated	8.0	124	%	125	360	350	337	319	518	490	454	407	50
	240 99 85	9mm Luger	Hexagon	8.0	124	Anvil	150	350	341	328	311	490	465	430	387	50
Stable Statement of the	240 14 20	9mm Luger	Full Metal Jacket	8.0	124	Anvil	125	360	350	337	319	518	490	454	407	50
	231 77 07	9mm Luger	Jacketed Hollow Point	7.5	115	Anvil	150	370	355	335	319	513	472	422	407	50
treamings.	240 29 32	9mm Luger	Jacketed Hollow Point	8.0	124	~	150	362	355	344	330	524	503	475	435	20
	231 77 08	9mm Luger	Full Metal Jacket Flat Nose	10.0	154	Anvil	150	283	278	270	259	400	386	366	336	50
	231 75 09	9x21	Full Metal Jacket	8.0	124	Anvil	150	360	351	340	325	518	493	462	423	50
	241 08 56	9x21	Lead Round Nose, copper-plated	8.0	124	Anvil	150	360	351	338	321	518	493	423	412	50
	231 77 11	.38 Super Auto	Full Metal Jacket	8.0	124	Anvil	150	430	411	385	348	740	675	591	485	50
Creen file to the file of the	240 33 52	.40 S&W	Lead Round Nose, copper-plated	10.7	165	%	150	353	348	340	329	667	647	619	579	50
	231 77 12	.40 S&W	Full Metal Jacket Flat Nose	11.7	180	Anvil	150	310	306	301	292	562	548	530	497	50
	240 44 64	.45 Auto	Hexagon	13.0	200	Anvil	150	261	260	258	254	508	502	495	482	50
	231 77 14	.45 Auto	Full Metal Jacket	14.9	230	Anvil	150	260	256	250	240	503	488	466	429	50
Technology	240 30 90	.45 Auto	Lead Round Nose, copper-plated	14.9	230	*	150	261	259	257	253	508	501	492	476	50
	231 77 15	.45 Auto	Jacketed Hollow Point	14.9	230	Anvil	150	260	256	250	240	503	488	466	429	50

72 | AMMUNITION | GECO | AMMUNITION | 73

GECO PERFORMANCE SHIRT

The 100% polyester mesh GECO performance shirt is as comfortable as it is long-wearing. The polyester mesh material is particularly light and elastic. The shirt is durable, wrinkle-free and easy to care for. Half-zip polo styling and dynamic GECO design lend this performance shirt its sporty appearance.

Item No.	Туре
231 87 12	Size M
231 87 13	Size L
231 87 14	Size XL
231 87 15	Size XXL

GECO T-SHIRT

Classic crew neck t-shirt made of 100% cotton in a comfortable straight cut with a modern take on the GECO design printed on the front and back.

	_	
Item No.	Туре	
231 79 56	Size S	
231 79 57	Size M	
231 79 58	Size L	
231 79 59	Size XL	
231 79 60	Size XXL	
231 61 11	Size XXXL	

GECO RANGE BAG

The GECO range bag is the ideal companion for all of your trips to the range. Designed with enough room for ammunition and accessories, this bag features a removable inner compartment that is held in place with a hook-and-pile fastener. The U-shaped outer zipper is lockable, and comes already equipped with a 3-digit combination lock.

A separate bag to collect and store empty cartridge cases is also included. This shell bag incorporates a string closure and a stable karabiner link so that it can be attached to the range bag or a belt loop. Thanks to its mesh bottom, the bag can easily be cleaned of loose debris by simply shaking it.

Material: 100% Nylon Size range bag: ca. 23 x 14 x 18 cm Size shell bag: ca. 16 x 13 cm

GECO HEXAGON CAP

Classic 6-panel cap with HEXAGON logo elaborately embroidered in 3-D, GECO logo printed on the bill, and the GECO logo with the slogan "ALL YOU NEED" embroidered on the rear above the adjustment strap. Adjustable fit. Material: Cap 100% cotton; crown 100% polyester

Item No.	Product	color
231 79 64	GECO Hexagon cap	red/black

NEW CLASSIC GECO CAP

Classic 6-panel cap with embroidered GECO logo and four rows of trendy decorative stitching on the bill. Bill upper side red, bill underside black, bill core white. Adjustable band size. Materials: Bill and front panels 100% cotton; mesh back 100% polyester

Item No.	Product	color
231 61 12	Classic GECO cap	red/black

SHOTSHELLS

COATED COMPETITION SLUG BLACK 26

- Leaves almost no lead fouling in the barrel thanks to its Teflon-coated slug
- Absence of lead fumes leads to low air pollution
- Balanced powder charge provides excellent reliability and
- Shorter, transparent case allows for a higher capacity in tubular magazines
- The high velocity of 450 m/sec (1475 fps) makes leading moving targets unnecessary
- Practical 100-round pack with carry strap
- Low recoil

Item No

231 76 25 CCS BLACK 26

100

COATED COMPETITION SLUG RED 28

NEW

- Leaves almost no lead fouling in the barrel thanks to its Teflon-coated slug
- Absence of lead fumes leads to low air pollution
- Special powder charge for a safe use in sensitive semi-autos
- Shorter, transparent case allows for a higher capacity in tubular magazines
- The high velocity of 420 m/sec (1377 fps) makes leading moving targets unnecessary
- Practical 100-round pack with carry strap

		SI			
Item No.	Type	Gauge	in g	Ctg/box	V _{2.5 m}
241 02 47	CCS RED 28	12/67.5	28.0	100	420 m/se

COATED COMPETITION BUCK SHOT

These buck shot cartridges have been especially developed for IPSC matches which include mandatory buck shot stages. This cartridge has the following specific properties:

12/67.5

26.0

- 9 pellets of 8 mm diameter for the best possible patterns
- Nickel-plated shot. This reduces flyers even with tighter
- Very tight pattern due to the use of a shot cup with short
- Short case length for higher capacity in tubular magazines
- Reliable function even in sensitive semi-autos
- Low recoil

	S	hot weigh	it	
Item No. Type	Gauge	in g	Ctg/box	$V_{2.5 m}$
240 02 32 CC BUCK SHOT	12/65	27.0	25	410 m/sec

DYNAMIC BIRD SHOT

The utility of this competition cartridge includes all disciplines of dynamic shotgun sports. Especially loaded for IPSC and falling plate matches, this cartridge has the following

- 2 types ideal for varying shot distances
- Ideal combination of pattern density and shot weight
- Very tight pattern due to the use of a shot cup with short
- Short case length for higher capacity in tubular magazines
- Reliable function even in sensitive semi-autos
- · Low recoil

Item No.	Туре	Gauge	Shot weight in g	Shot sizes	Ctg/box	V _{2.5 m}
240 02 35	DYNAMIC BIRD SHOT 29	12/65	29.0	2.75 mm	25	400 m/se
240 02 34	DYNAMIC BIRD SHOT 31	12/65	31.0	2.9 mm	25	390 m/se

RIMFIRE CARTRIDGES

RIFLE & SEMI-AUTO

- Good performance at a favourable price
- Training and practice ammunition for more modest requirements
- All-purpose cartridges for beginners
- GECO Rifle: Reliable function in self-loading rifles
- GECO Semi-Auto: Optimised for semi-automatic rifles and pistols

Iten	n No.	Calibre	Туре	Bullet	Weight	Barrel length		Velocity m/sec			Energy joules		Point of in bore axis	npact in cm	with scope	e mounted	5cm above	
					g	mm	V_0	V ₅₀	V ₁₀₀	E_0	E ₅₀	E ₁₀₀	Sighting- in distance	25 m	50 m	75 m	100 m	Ctg/box
213	25 40	.22 l.r.	RIFLE	LRN	2.6	650	330	295	270	142	113	95	50 m	0.7	\oplus	-7.8	-23.1	50
231	85 99	.22 l.r.	SEMI-AUTO	LRN	2.6	420	350	306	279	159	122	101	50 m	0.4	\oplus	-6.9	-21.1	50

AIR GUN PELLETS

DIABOLO

It is easy for beginners to discover the joy of shooting when they start out with an air gun. Even old hands are enchanted with the level of accuracy attainable in this shooting sport. The GECO Diabolo has been specially developed for beginners and hobbyists. Those who shoot a lot need a precise pellet at a favourable price. The standardised manufacturing steps used to make these smoothskirted pellets guarantee the necessary degree of accuracy at a very low price.

- Developed for beginners and hobbyists
- · Accurate yet affordable
- Reliable accuracy
- Smooth skirt

SUPERPOINT

The Geco Superpoint is a smooth-skirted air gun pellet with a conical point for high impact and deep penetration. It is suitable for silhouette shooting as well as for small pest control. The optimal centre of balance makes for good accuracy at a favourable price.

- For casual shooters
- Accurate yet affordable
- · Reliable accuracy
- Conical point with smooth skirt

Item No.	Туре	Calibre mm	Weight g	Length mm	Single pack.	Sales pack.
213 74 53	DIABOLO	4.5	0.45	5.2	500	5000
213 67 40	SUPERPOINT	4.5	0.50	6.9	500	5000

76 | AMMUNITION | ROTTWEIL **ROTTWEIL** | AMMUNITION | 77

SHOTSHELLS

Rottweil offers a large assortment of shotshells for both game and weil has introduced various product lines to help you find exactly range. To cater to the broad range of cartridge applications, Rott- the load that suits both you and your special purpose.

Premium Line

Outstanding quality and top performance for the most demanding sportsman. As suitable for rough-shooting as for the shooting party.

Product groups:

WAIDMANNSHEIL PAPPE WAIDMANNSHEIL HV PLASTIK, MAGNUM, SEMI-MAGNUM, COPPER UNLIMITED

Professional Line

High quality and reliable performance for demanding shooters.

Product groups: JAGD BRAUN

Basic Line

Game cartridges with standard components for volume users. Ideal for high-volume shoots (e.g. wood pigeon).

Product groups:

SPECIAL 36, SPECIAL F, MARK II

Extra Line

Top-quality products with very good features for special applications (e.g. wild boar).

Product groups:

EXPRESS. EXACT, **BRENNEKE**

Steel Line

High-quality soft iron loads for environmentally conscientious shooters. Ideal for waterfowl in environmentally sensitive areas.

Product groups:

STEEL GAME

Competition Line

Competition cartridges with a good price-to-performance ratio for trap, skeet, sporting and game shooting.

Product groups:

GOLD HV, SPECIAL, FASAN FF, SUBSONIC, STEEL

NEW

GAME EDITION

Series of shotshells developed for game-specific applications.

Product groups:

DUCK, PIGEON, HARE, CROW, DEER, PHEASANT, GOOSE, PARTRIDGE

Rottweil products with comparable quality and similar range of use are grouped within these lines without changing their long-established product names (Waidmannsheil, Tiger. etc.). The above overview shows what quality features and recommendations for use are to be found in each particular line.

The line grouping is aided by a practical colour system that distinguishes the particular lines from each other and optically sorts products within a line. This consistent colour scheme is to be found not only in this catalogue but also on the product packaging.

ROTTWEIL PREMIUM LINE

We are driven by our high quality standards.

We take great care to select only the finest quality components for our premium shot cartridges. Only carefully selected and thoroughly tested cases, wads and powders are used. Even the look of our premium line is different: Fine permanent printing on the cartridge case, highly polished case heads and high-quality packaging

Premium Line

Outstanding quality for the most demanding shooter

The Rottweil Premium Line offers exclusive cartridges to the most demanding shooters. Our traditional products with outstanding quality and highest performance have been favourites for generations. Shooters the world

over that want to kill their game cleanly and ethically trust in Rottweil premium products. Whether you go alone or in a group, your success is assured with Rottweil Premium!

ROTTWEIL MAGNUM

Especially powerful for denser patterning

Due to its highest possible shot load this cartridge is ideal for special applications in game shooting. Only for shotguns with a 76 mm (3 in.) chamber length and magnum barrel proof!

- 20 mm brass head
- plastic wad
- · lead shot
- extra-heavy shot charge

Sauge	Shot sizes	Weight	Pack unit	V 2.5 m
12/76 Magnum	2.7 - 4.0 mm	52 g	10/box	380 m/sec
20/76 Magnum	2.7 - 3.7 mm	33 g	10/box	370 m/sec

ROTTWEIL SEMI MAGNUM

Dense patterning for normal shotguns

This semi-magnum load has been developed to offer the hunter a heavier shot load for shotguns with standard proof marks and a chamber length of 70 mm (23/4 in.).

- black polyethylene case
- 20 mm brass head
- plastic wad
- lead shot

12/70 Mag

· heavy shot charge

	Shot sizes	Weight	Pack unit	$V_{2.5\ m}$
jnum	2.7 - 4.0 mm	40 g	10 box	375 m/sec

ROTTWEIL WAIDMANNSHEIL PAPPE

Masterful perfection for the most demanding shooter

This extremely high quality shotshell has been continuously improved over decades of use. The newest improvement of this favourite has been to impregnate the paper case with an ecologically friendly water-based varnish. The environmentally conscious hunter will particularly appreciate the combination of cardboard and felt fibre wadding.

- · varnished black paper case
- · nitro card wad
- · felt fibre cushion wad
- 20 mm brass head
- lead shot

Gauge	Shot sizes	Weight	Pack unit	V 2.5 m	
12/70	2.5 - 4.0 mm	36 g	10/box	380 m/sec	

ROTTWEIL WAIDMANNSHEIL HV PLASTIK

Masterfully perfected for fast hits

The extremely high quality plastic version of the legendary Waidmannsheil Pappe is also a real success story in the Rottweil line. The especially high velocity combined with a heavy shot load in a plastic wad offers excellent performance with good patterning.

- cal. 12: black polyethylene case with 20 mm brass head
- cal. 16: black polyethylene case with 16 mm brass head
- cal. 20: yellow polyethylene case with 16 mm brass head
- plastic wad
- · lead shot
- · high velocity

Gauge	Shot sizes	Weight	Pack unit	V _{2.5 m}
12/70	2.5 - 4.2 mm	36 g	10/box	395 m/sec
16/70	2.7 - 4.0 mm	31 g	10/box	385 m/sec
20/70	2.5 - 3.5 mm	28 g	10/box	385 m/sec

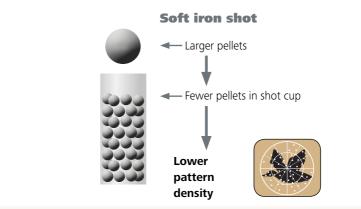
Premium Line

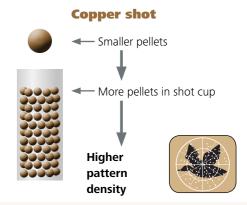
COPPER UNLIMITED – for unrestricted lead-free shooting

1. MORE HITS

Due to the greater density of copper, the same shot charge weight can be made up of shot one size smaller than that of its steel counterpart. This increases the number of pellets in the load and thereby the pattern density (see illustration below).

2. BETTER **MATERIAL PROPERTIES**


Shot made of pure copper has a density of 8.9 g/cm³ and is about 15% heavier than soft iron in addition to being much softer and more malleable.


3. MORE **FREEDOM**

The new Rottweil Copper Unlimited allows all species of small game to be taken with lead-free ammunition and without restriction - whether over wetlands, in the woods, or in open fields.

4. SAFER

Of all lead-free Rottweil shot cartridges, Rottweil Copper Unlimited present the lowest danger of ricochets.

ROTTWEIL COPPER UNLIMITED 12/76 MAGNUM

Lead-free magnum cartridge for top performance

High-performance magnum cartridge with copper shot for guns proved for steel shot. Longer effective range and better killing power than magnum steel shot cartridges. Not just a great choice for shooting over wetlands, but also suitable for forest and field shooting.

- Black polyethylene case
- 20 mm case head
- Special shot cup
- Pure copper shot
- Heaviest possible shot load
- maximum 1050 bar

Pack unit 12/76 Magnum 2.75 - 3.25mm 40 g 10/box Enhanced steel shot proof

ROTTWEIL COPPER UNLIMITED 12/70

Masterfully perfected for quick hits

High-performance cartridge with copper shot for guns proved for steel shot. Longer effective range and better killing power compared to steel shot cartridges. Not just a great choice for shooting over wetlands, but also suitable for forest and field shooting.

- Black polyethylene case
- 20 mm case head
- Special shot cup
- Pure copper shot
- Especially high velocity ($V_{2.5} = 397 \text{ m/sec}$)
- maximum 1050 bar

Gauge	Shot size	Weight	Pack unit	$V_{2.5\;m}$
12/70	2.75 - 3.25mm	34 g	10/box	397 m/sec
Enhanced steel shot proof				

The Rottweil Professional Line offers high quality and Professional Line shotshells are particularly suitable for top performance for the serious shooter. Produced with selected components for the discerning shooter,

waterfowling and woodland pursuits.

ROTTWEIL JAGD BRAUN PLASTIK

Classic performance for versatile shooters

The Jagd Braun with plastic case and fibre wad is a classic cartridge for demanding shooters who need a heavy charge of larger shot. With specially selected components and a 36 g shot load, this game cartridge stands out thanks to its good patterns and favourable price-to-performance ratio.

- brown plastic case
- 20 mm brass head
- H-disc with felt fibre wad
- lead shot

Gauge	Shot sizes	Weight	Pack unit.	V _{2.5 m}
12/70	2.7 - 3.5 mm	36 g	10/box	375 m/sec
16/70	3.0 + 3.5 mm	31 g	10/box	375 m/sec

ROTTWEIL JAGD BRAUN STREU PLASTIK

Classic performance for shorter ranges

This spreader variant of the Jagd Braun is ideally suited to closerange pursuits, such as when shooting in wooded areas or at incoming ducks. The spreader insert produces a wide shot pattern up to a range of about 25 m that increases hit probability and prevents loss of game.

- brown plastic case
- 20 mm brass head
- H-disc with felt fibre wad
- lead shot
- plastic spreader insert

⊗ = spreader insert

iauge	Shot sizes	Weight	Pack unit.	$V_{2.5 m}$
2/70	2.7 + 3.2 mm ⊗	34 g	10/box	375 m/sec
6/70	2.7 mm ⊗	30 g	10/box	375 m/sec

AGD BRAUN STREU

ROTTWEIL THERMOS FLASK

The perfect gift for the avid hunter! This originale thermos flask comes in the design of the legendary Rottweil Waidmannsheil shotgun cartridge. Thanks to its high-quality stainless steel the flask offers excellent insulating properties. The top can be unscrewed and used as a drinking cup.

- Originale thermos flask in the form of the legendary Waidmannsheil shotgun cartridge
- Excellent insulating properties thanks to high-quality stainless steel
- With integrated drinking cup and quick-stop cap for easy pouring
- Capacity: 750 ml
- Material: stainless steel

Item No.	Туре
231 92 32	Rottweil thermos flask

Hunting shotshells with standard components for high-volume shooters

shooters needing large numbers of cartridges. By using

The Rottweil Basic Line offers great value for regular performance, they are extremely suitable for high-volume shooting, e.g. wood pigeon.

less expensive components yet still offering excellent

ROTTWEIL SPECIAL 36

Outstanding value for shooters on a budget

This special game cartridge with low base head and heavy shot load is an economical alternative yet with few compromises for the priceconscious shooter.

The favourable price is achieved through the use of lower-cost components in the manufacturing process.

- dark green polyethylene case
- 16 mm brass head
- plastic wad
- · lead shot

Gauge	Shot sizes	Weight	Pack unit	V _{2.5 m}
12/70	2.5 - 4.0 mm	36 g	25/box	380 m/sec

ROTTWEIL MARK II 30 HV

Fast loads for fast birds

Smaller game require smaller shot. Reducing the load to 30 g increases shooter comfort to allow many more shots in the course of the day. The high velocity (HV) helps in hitting wide-flushing and fast-flying birds such as red partridge.

- bright green plastic case
- 12 mm brass head
- shot cup
- lead shot

Gauge

· high velocity

MARK 30 H
<= (c)
1-10
V _{2.5 m}
200 m/soc

Gauge	Shot sizes	Weight	Pack unit	V _{2.5 m}
12/67.5	2.7 + 3.2 mm	30 g	25/box	390 m/sec

ROTTWEIL SPECIAL 12 F, 16 F, 20 F

Fine shot for higher hit rates

This game shotshell series offers a wide selection of shot sizes in all three gauges with emphasis on smaller pellet sizes. The fibre wad combined with the H-disc gas seal produces an especially wide and even pattern for more certain hits on smaller bird species.

- green polyethylene case in 12 and 16 ga. yellow polyethylene case in 20 ga.
- plastic base wad
- 12 ga. with 12 mm brass head 16 ga. with 8 mm brass head 20 ga. with 12 mm brass head
- H-disc with felt fibre wad
- lead shot

SPECIAL 36

Gauge	Shot sizes	Weight	Pack unit	V _{2.5 m}
12/67.5	2.2 – 3.2 mm	32 g	25/box	380 m/sec
16/67.5	2.5 - 3.0 mm	27 g	25/box	375 m/sec
20/67.5	2.5 - 3.2 mm	26 g	25/box	375 m/sec

ROTTWEIL SPECIAL 12 F STREU

Economy load for short-range shooting

The Rottweil Special 12 F Streu is especially suitable for ground game and incoming ducks. Thanks to its spreader insert and fibre wad, this cartridge delivers satisfyingly wide patterns. The use of economical components keeps this cartridge within the reach of every shooter.

- green plastic case
- 12 mm brass head
- H-disc with felt fibre wad
- spreader insert

Gauge	Shot sizes	Weight	Pack unit	V _{2.5 m}	
12/67.5	2.7 mm ⊗	32 g	25/box	380 m/sec	

 \otimes = spreader insert

GAME EDITION

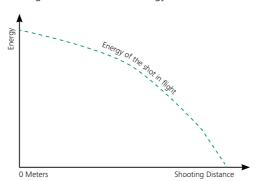
- developed for game-specific applications

The components and performances of each cartridge are tailored to produce an optimal distribution of impact energy – and thereby a killing effect – against specific game species. The fine-tuning of each loading is achieved through rigorous quality testing combined with a new measurement and analysis protocol.

combination of energy delivery and pattern coverage - while heavier species need more. In addition to its weight, the surface area of the game to be hunted is another decisive variable.

Within the usual range of shooting distances for certain species of small game, GAME EDITION cartridges deliver far more pattern energy than is necessary for a sportsmanlike kill. This gives the small game shooter the confidence of knowing that he has a reserve of energy if he needs it: if the pattern isn't quite centred on the Light game species need less pattern energy – the animal, if ground game is in full run or the birds are flying fast, or if the shooting distance lies at the cartridge's maximum effective range.

> This is why GAME EDITION cartridges guarantee the best possible success in small game hunting.


SHOT AND PATTERN

The number of shot pellets and their distribution over a defined surface area is known as pattern. Practically speaking, pattern is commonly determined by firing at a 16-field target 75 cm (29.5 in) in diameter. The more pellets that land inside the circle – and the more

uniform their distribution within the target area – the better the pattern, thereby increasing hunting success with the shotgun. Our measurement protocol also uses a 75 cm target, but it has 100 fields to achieve even more precise results.

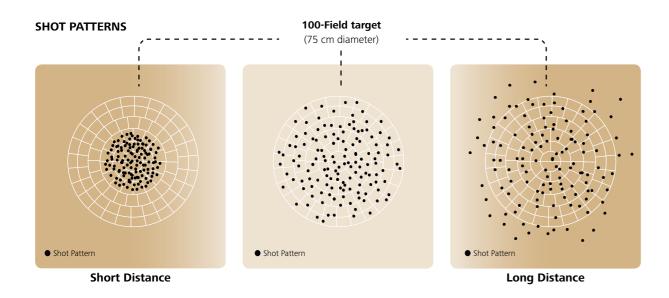
WHAT IS GAME-SPECIFIC PATTERN ENERGY?

Pattern energy is a combination of the pattern, i.e. the distribution of shot pellets upon the target, and the energy of the flying pellets. The net kinetic energy of the shot is calculated using the number of individual pellets, their masses, and their velocities. Since the velocity of the shot diminishes as the shooting distance increases, the energy is diminished as well. That is, the shorter the shooting distance the higher the net kinetic energy.

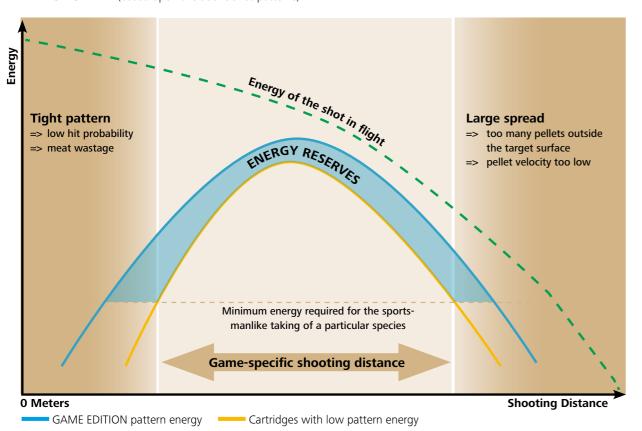
Pattern energy incorporates both the kinetic energy and the pattern of the pellets into its energy curve calculation. Impact energy is recorded only for pellets that land within the 75 cm diameter of the 100-field target.

Understandably, the distribution of the pellets changes with the shooting distance. At shorter ranges, the pellets cluster in the centre too close to one another - in other words, an overabundance of energy dominates the centre of the target circle.

Ideally, enough pellet impact energy should be distributed across the surface of the test target that game anywhere within the target circle would be bagged in a sportsmanlike manner when struck. This is when the pattern energy is highest.


At distant ranges, the pattern energy diminishes because more pellets land outside the target circle while, at the same time, the pellet velocity drops. Therefore, the pattern energy is the distribution of energy into the entire target circle.

Since in the end only the pellets that actually deliver energy for the taking of game are included in the energy sum, one might understand pattern energy as being the same as killing probability.


Game-specific pattern energy is the distribution of the amount of such energy that is necessary, depending on game weight and size, for a particular species to be taken in a sportsmanlike manner.

Rottweil*

ENERGY RESERVES WHEN HUNTING SMALL GAME WITH GAME EDITION CARTRIDGES

ENERGY GRAPH (based upon the above shot patterns)

The energy graph depicted above demonstrates the large energy reserves that GAME EDITION cartridges command when hunting specific game species. The available pattern energy is far higher at every game-specific shooting distance than the minimum energy required to kill that species in a sportsmanlike manner. In general, GAME EDITION cartridges have higher

game-specific pattern energy because their shot patterns are tailored to the species in question. In addition, aiming errors at very short distances can be compensated for by this energy reserve. In fact, thanks to the optimal shot distribution of the cartridge, sufficient pattern energy is always available – even for very long shots

GAME EDITION DUCK

NEW

- cal. 12: dark green plastic case with 16 mm high brass head
- cal. 20: yellow plastic case with 8 mm high brass head
- steel shot
- environmentally friendly/suitable for waterfowl
- optimised for a shooting distance of 12 25 m
- practical 100-pack with carry handle

GAME EDITION PIGEON

NEW

- cal. 12: dark green plastic case with 16 mm high brass head
- cal. 20: yellow plastic case with 8 mm high brass head
- lead shot
- optimised for a shooting distance of 15 35 m
- practical 100-pack with carry handle

GAME EDITION HARE

NEW

385 m/sec

100/box

- dark green plastic case
- 12 mm high brass head
- lead shot
- optimised for a shooting distance of 15 - 35 m

Gauge	Shot sizes	Weight	Pack unit.	V _{2.5 m}	
12/70	3.5 mm	36 g	25/box	400 m/sec	

GAME EDITION CROW

2.8 mm

NEW

380 m/sec

100/box

- dark green plastic case
- 12 mm high brass head
- lead shot
- optimised for a shooting distance of 20 - 40 m

Gauge	Shot sizes	Weight	Pack unit.	$V_{2.5\;m}$
12/70	2.9 mm	34 g	25/box	400 m/sec

90 | AMMUNITION | **ROTTWEIL** | AMMUNITION | 91

GAME EDITION DEER

NEW

- dark green plastic case
- 16 mm high brass head
- lead shot
- optimised for a shooting distance of 15 45 m
- use on deer only allowed in specific countries/areas

Gauge	Shot sizes	Weight	Pack unit.	V _{2.5 m}
12/70	3.75 mm	38 g	10/box	390 m/sec

GAME EDITION PHEASANT

NEW

- cal. 12: dark green plastic case with 16 mm high brass head
- cal. 20: yellow plastic case with 8 mm high brass head
- lead shot
- felt fibre wad
- low recoil
- optimised for a shooting distance of 8 25 m

Gauge	Shot sizes	Weight	Pack unit.	V _{2.5 m}
12/67.5	2.7 mm	28 g	25/box	390 m/sec
20/70	2.7 mm	28 g	25/box	375 m/sec

GAME EDITION GOOSE

NEW

- dark green plastic case
- 16 mm high brass head
- soft iron shot
- environmentally friendly/suitable for waterfowl
- especially high velocity (V 2.5 m = 429 m/sec)
- optimised for a shooting distance of 15 35 m

Only for shotguns carrying steel proof marks

Gauge	Shot sizes	Weight	Pack unit.	V _{2.5 m}
12/76	3.25 mm	35 g	10/box	429 m/sec

GAME EDITION PARTRIDGE

NEW

- dark green plastic case
- 12 mm high brass head
- lead shot
- optimised for a shooting distance of 10 35 m

Gauge	Shot sizes	Weight	Pack unit.	V _{2.5 m}
12/70	2.5 mm	32 g	25/box	400 m/sec

Have you heard about our glossary of weapons technology and ammunition? Find our little primer at: rws-ammunition.com → Service → Hunting → Glossary

ROTTWEIL EXTRA LINE

Top products for special applications

Buckshot/Slug loads

ROTTWEIL EXPRESS

Developed for special hunting situations

These cartridges are designed for specific applications and are used in countries where the use of extra-large shot at cloven-hoofed game is allowed. Use Rottweil Express when only buckshot will do, especially for short ranges and in thick brush.

- transparent polyethylene case
- 20 mm brass head
- H-disc with felt fibre wad
- lead buckshot

Gauge	Shot sizes	Weight	Pack unit	V _{2.5 m}
12/67.5	4.5 – 8.6 mm	28.5-38 g	10/box	390 m/sec – 415 m/sec
16/67.5	7.4 mm	22 a	10/box	415 m/sec

ROTTWEIL BRENNEKE MAGNUM

Heavy weight for maximum impact

The Rottweil Brenneke 'Silver' delivers very high impact energy for big game. Its accuracy in smoothbore shotgun barrels is not affected by the degree of choke constric-

This magnum cartridge must only be used in gun barrels showing magnum proof marks and with 76 mm (3 in.) chambers!

- transparent polyethylene case
- 20 mm brass head
- original Brenneke Silver shotgun slug with plastic tail section

Gauge	W	eight	Pack unit	V _{2.5 m}
12/76 Magnum	39 g	600 gr	5/box	420 m/sec

ROTTWEIL BRENNEKE CLASSIC

Good for all hunting situations

Classic hunting slug cartridge with felt wad that can be universally used up to 50 m with all ordinary shotguns.

- transparent polyethylene case
- 12 ga. with 20 mm brass head 20 ga. with 16 mm brass head
- H-disc with felt fibre wad
- Original Brenneke Classic shotgun slug with felt wad

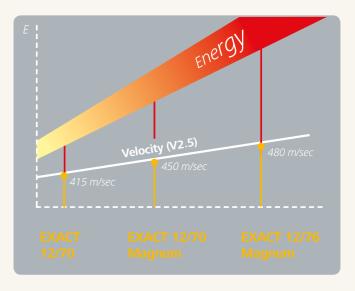
Gauge	We	eight	Pack unit	V _{2.5 m}
12/70	31.5 g	490 gr	10/box	415 m/sec
12/67.5	31.5 g	490 gr	10/box	415 m/sec
20/67.5	24 g	370 gr	10/box	410 m/sec

ROTTWEIL BRENNEKE CLASSIC MAGNUM

Fast slug for first-class success

Thanks to its magnum-pressure loading, this cartridge achieves a higher velocity and, as a result of this performance increase, it delivers more energy to the target. Its accuracy in smoothbore shotgun barrels is not affected by the degree of choke constriction.

- transparent polyethylene case
- 20 mm brass head
- H-disc with felt fibre wad
- original Brenneke Classic shotgun slug
- only for shotguns proved for magnum loads



auge	We	eight	Pack unit	V _{2.5 m}	
12/70 Magnum	31.5 a	490 gr	5/box	435 m/sec	

When shooting wild boar with a shotgun, the highest possible precision is paramount. To comply with sportsmanlike ethics, wild boar should be shot at ranges no greater than 50 metres in order to minimise the need for tracking wounded animals. The Rottweil EXACT

slug cartridge is precision-built and is the most accurate Rottweil slug cartridge ever. In addition, it offers a lower-priced alternative to our Classic slug with felt

ROTTWEIL EXACT MAGNUM

More performance, more energy

The magnum variants of the Rottweil EXACT deliver more energy and even greater stopping power on game such as wild boar with more velocity, less lead and fewer misses particularly on game drives. Only for use in barrels bearing magnum proof marks!

• transparent plastic case

12/70 Magnum 32 q

- 12 ga. with 20 mm brass head, white plastic tail section
- 20 ga. with 16 mm brass head, yellow plastic tail section

26 g

V 25 m

480 m/sec

450 m/sec

5/box

5/box

For convincing accuracy

ROTTWEIL EXACT

Outstanding precision

The Rottweil EXACT slug cartridge was developed in cooperation with the renowned slug manufacturer Gualandi. EXACT in name - precise in performance.

- transparent plastic case
- 12 ga. with 20 mm brass head, white plastic tail section
- 16 ga. with 16 mm brass head, white plastic tail section
- 20 ga. with 16 mm brass head, yellow plastic tail section
- featuring Gualandi technology

Gauge	Weight	Pack unit	V _{2.5 m}
12/70	32 g	10/box	415 m/sec
12/67.5	32 g	10/box	415 m/sec
16/70	29 g	10/box	420 m/sec
16/67.5	29 g	10/box	420 m/sec
20/70	26 a	10/hov	115 m/coc



Soft iron shotshells for the environmentally-conscious shooter

ROTTWEIL STEEL GAME HV

The fast soft iron cartridge

Rottweil have expanded their assortment of soft iron cartridges by adding an HV load. This lead-free cartridge with CIP-approved soft iron shot differentiates itself from the Rottweil Steel Game through its higher velocity (HV). It transmits more energy to the target at longer shooting ranges. The Rottweil Steel Game HV with soft iron shot is non-toxic and is therefore suitable for waterfowling. For shooters wanting a fast cartridge capable of long-distance performance, the Rottweil Steel Game HV with soft iron shot is also environmentally friendly. Only for use in barrels with 70 mm (2¾ in.) chambers and bearing magnum proof marks!

- 12 ga. with 20 mm brass head 20 ga. with 16 mm brass head
- special plastic wad
- · soft iron shot
- especially fast (HV)
- environmentally friendly/suitable for waterfowl

Gauge	Shot sizes	Weight	Pack unit	V $_{2.5\;m}$
12/70	3.0 - 3.75 mm	32 g	25/box	400 m/sec
20/70	3.25 mm	24 g	10/box	400 m/sec

Interactive product selector

Select the Rottweil shotshell most suited to your game of choice with the help of our interactive product selector.

Find it on our website: rws-ammunition.com → Products
→ Hunting → Interactive product advisor

For more shotshells please see our listings in the GECO section of this catalogue.

ROTTWEIL STEEL GAME

Lead-free for sensitive countryside areas

This cartridge with CIP-compliant iron shot was developed specifically for shooting in environmentally sensitive areas, e.g. near water or in areas where no lead shot is permitted. Safe for use in barrels with 70 mm (2¾ in.) chambers and bearing normal proof marks.

- 12 and 16 ga. with silver-coloured polyethylene case
 20 ga. with yellow polyethylene case
- 12 ga. with 20 mm brass head 16 and 20 ga. with 16 mm brass head
- special wad
- steel shot
- environmentally friendly/ suitable for water fowl

Useable in guns without higher gas pressure (magnum) proof marks.

Gauge		Shot sizes	Weight	Pack unit	$V_{2.5 m}$
12/70	Normal proof	2.6 - 3.25 mm	32 g	25/box	375 m/sec
16/67.5	Normal proof	3.0 mm	26 g	10/box	370 m/sec
20/70	Normal proof	2.6 mm	24 g	10/box	380 m/sec

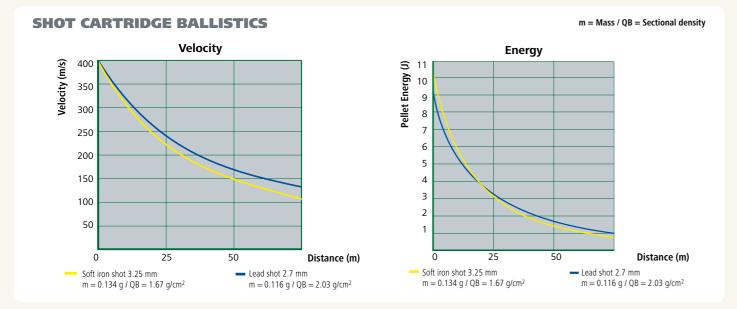
ROTTWEIL STEEL GAME SPEED 28

Fast, light and environmentally friendly

The Speed 28 is the light and fast soft iron cartridge in the Steel Game series. Due to the high maximum muzzle velocity (V2.5 m) of 425 m/ sec. the lead factor for moving targets can be noticeably reduced.

At the same time, the Steel Game Speed 28 can be shot in barrels with standard proof marks and with any choke restriction. Ideally suited to small and medium-sized waterfowl such as teal.

- silver-coloured polyethylene case
- 20 mm brass head
- special plastic wad
- 28 g soft iron shot load
- environmentally friendly/ suitable for waterfow


Useable in guns without higher gas pressure (magnum) proof marks.

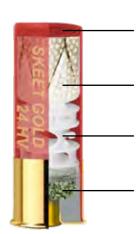
Gauge	Shot sizes	Weight	Pack unit	$V_{2.5\;m}$
12/70 Normal proof	3.0 + 3.25 mm	28 g	25/box	425 m/sec

96 | AMMUNITION | ROTTWEIL

Due to their lower density of 7.8 g/cm³ compared to one must choose a shot size two numbers larger than 11.0 g/cm³ with lead, soft iron shot pellets fly slower what one would normally use. In concrete terms, use a and not as far. In order to compensate for the loss of soft iron load with 3.25 mm (No. 4) pellets instead of a velocity and energy of soft iron shot versus lead shot, 2.7 mm (No. 6) lead load.

NEW

ROTTWEIL GOLD HV SERIE


Rottweil HV have been the epitome of high-velocity competition recoil, wads with optimized patterning at various impact ranges, shot shells for years thanks to their consistent high quality. With its and transparent cartridge cases that make all of this sophisticated new GOLD HV series, Rottweil achieves a new level of quality. In close cooperation with the successful cadre shooters of the sional Olympic shooter – passionate competition and sporting clays German Shooting Federation (DSB), many components have been optimized: Pellets with greater breaking power, powder with less

technology visible. The GOLD HV doesn't just speak to the professhooters will profit from the improved characteristics of this sporting shot shell line as well.

THE ADVANTAGES OF THE NEW GOLD HV SERIES AT A GLANCE:

Developed in cooperation with the German Shooting Federation (DSB)

Transparent shell casing makes the sophisticated technology visible

Gold-graphited pellets have more target-breaking power (5% antimony)

Wads optimized for better

'Soft recoil' powder for minimal recoil

ROTTWEIL GOLD HV SERIES -DEVELOPED IN COOPERATION WITH SUCCESSFUL DSB CADRE SHOOTERS

Some of the important questions we asked:

co-develop this series from the ground up.

• How does the pattern spread at various impact ranges?

- What influence does velocity have on recoil and lead distances?
- Can target-breaking power be increased without negative side effects?

With the innovative components and sensible loadings of the GOLD HV series, Rottweil has delivered exactly what a professional shooter expects from a high-performance competition cartridge. Every ambitious competition shooter can increase his score with this shell, enjoying more success and fun while shooting.

Successful clay target shooting depends on mental fortitude, experience, technique and the right equipment. As long-time cadre shooters, we eagerly shared our experience with Rottweil throughout the development of its new SPORT GOLD HV line. Thanks to our extensive testing, we were able to

Paul Pigorsch

Andreas Löw and Paul Pigorsch - DSB Cadre Shooters

ROTTWEIL TRAP GOLD 24 HV

The newly-developed shot wad of the TRAP GOLD 24 HV shell delivers consistently good patterning with the first as well as the second shot. In addition, the wad's shock-absorbing compression zone noticeably reduces recoil.

- High-quality transparent blue case
- 22 mm high case head
- · High target-breaking power thanks to hard, gold-graphited lead pellets (5% antimony)
- Short lead distances are made possible by fast HV powder loads (V2.5 = 415 m/sec [1361 fps])
- Low recoil thanks to 'soft recoil' powder with a consistent burn rate
- Reliable Sinoxid priming

Gauge	Shot sizes	Weight	Pack unit.	$V_{2.5\;m}$
12/70	2.4 mm	24 g	25/box	415 m/sec

ROTTWEIL SKEET GOLD 24 HV

Outstanding patterning at typical skeet distances thanks to a special wad that rapidly separates from the pattern.

- High-quality transparent red case
- 22 mm high case head
- High target-breaking power thanks to hard, gold-graphited lead pellets (5% antimony)
- · Short lead distances are made possible by fast HV powder loads (V2.5 = 415 m/sec [1361 fps])
- Low recoil thanks to 'soft recoil' powder with a consistent burn rate
- · Reliable Sinoxid priming

Gauge	Shot sizes	Weight	Pack unit.	V $_{2.5\;m}$
12/70	2.0 mm	24 g	25/box	415 m/sec

ROTTWEIL SPORT GOLD 24 HV

The newly-developed shot wad of the SPORT GOLD 24 HV shell delivers consistently good patterning with both the first as well as the second shot. In addition, the wad's shock-absorbing compression zone noticeably reduces recoil.

- High-quality transparent red case
- 22 mm high case head
- · High target-breaking power thanks to hard, gold-graphited lead pellets (5% antimony)
- Short lead distances are made possible by fast HV powder loads (V2.5 = 415 m/sec [1361 fps])
- Low recoil thanks to 'soft recoil' powder with a consistent burn rate
- Reliable Sinoxid priming

Gauge	Shot sizes	Weight	Pack unit	V $_{2.5\;m}$
12/70	2.2 mm	24 g	25/box	415 m/sec

ROTTWEIL SPORT GOLD 28 HV

The specialized wad of the SPORT GOLD 28 HV shell is optimized for the variable shooting distances found in sporting clays shooting.

- High-quality transparent red case
- 22 mm high case head
- · High target-breaking power thanks to hard, gold-graphited lead pellets (5% antimony)
- Short lead distances are made possible by fast HV powder loads (V2.5 = 410 m/sec [1345 fps])
- Low recoil thanks to 'soft recoil' powder with a consistent burn rate
- Reliable Sinoxid priming

Gauge	Shot sizes	Weight	Pack unit.	V _{2.5 m}
12/70	2.2 mm	28 g	25/box	410 m/sec

ROTTWEIL SKEET STREU GOLD 24 HV

The SKEET STREU GOLD 24 HV spreader shell delivers an ideal pattern for hunter-style skeet shooting due to its wad's integral spreader insert.

Pack unit.

25/box

- High-quality transparent green case
- 22 mm high case head
- High target-breaking power thanks to hard, gold-graphited lead pellets (5% antimony)
- Short lead distances are made possible by fast HV powder loads (V2.5 = 410 m/sec [1345 fps])
- Low recoil thanks to 'soft recoil' powder with a consistent burn rate
- · Reliable Sinoxid priming

rottweil-ammunition.com

410 m/sec

from heat, hot surfaces, sparks, open flames and ther ignition sources. No smoking.

Shot sizes

2.0 mm ⊗

ROTTWEIL SPECIAL SKEET ROTTWEIL SPECIAL TRAP ROTTWEIL SPECIAL SPORT

More versatility for competitive shooters

Regardless of whether for competition or practice, the Special series always offers an economic alternative with its large choice of various shot weights with pellet sizes from 2.0 to 2.4 mm for all competition applications.

- Trap: light blue polyethylene case with 10 mm brass head
- Skeet and Sport: red polyethylene case with 12 mm brass head
- plastic wad
- · lead shot

12/70

12/70

12/70

25/hox

25/box

ROTTWEIL SUBSONIC TRAP

The best practice cartridge for the game shot

A special cartridge with reduced noise signature for shooting ranges that must operate under strict noise emission requirements.

- bright green polyethylene case
- 12 mm brass head
- shot cup
- lead shot
- reduced noise emission

Gauge	Shot sizes	Weight	Pack unit	$V_{2.5\;m}$
12/67.5	2.4 mm	28 g	25/box	315 m/sec

ROTTWEIL SPECIAL SKEET STREU

Greater success for skeet shooters

Firing distances in 'hunter-style' skeet shooting are usually short and require a spreader insert to achieve significantly denser patterns than are available with Special Skeet. This spreader cartridge is also particularly suited to specific situations encountered during game shooting.

- green polyethylene case
- 12 mm brass head
- plastic wad
- lead shot

Gauge 12/67

plastic spreader insert

e	Shot sizes	Weight	Pack unit	V _{2.5 m}
7.5	2.0 mm ⊗	24 + 28 g	25/box	390 m/

ROTTWEIL FASAN FF

Perfect training cartridge for small-game hunters

This qualitatively very high training shot cartridge with biodegradable cardboard and felt fibre wads is very environmentally friendly. This simplifies disposal at the shooting stand area.

- cal. 12: green polyethylene case with 12 mm brass head
- cal. 16: red polyethylene case with 16 mm brass head
- cal. 20: yellow polyethylene case with 8 mm brass head
- · cardboard disc/felt fibre wad
- · lead shot

• environmentally friendly

Gauge	Shot sizes	Weight	Pack unit	V _{2.5 m}
12/67.5	2.4 mm	28 g	25/box	380 m/sec
16/67.5	2.0 + 2.4 mm	28 g	25/box	380 m/sec
20/67.5	2.0 + 2.4 mm	24 g	25/box	380 m/sec

ROTTWEIL STEEL SKEET 24 HV ROTTWEIL STEEL TRAP 24 HV ROTTWEIL STEEL TRAP 28 HV

Lead-free for skeet and trap shooters

Lead free trap cartridge with CIP-approved soft iron shot for environmentally sensitive shooting ranges.

Gauge	Shot sizes	Weight	Pack unit	V _{2.5 m}
12/70 Normal proof	2.2 mm	24 g	25/box	410 m/s
12/70 Normal proof	2.5 mm	24 + 28 g	25/box	410 m/s

- · Bordeaux red plastic case
- 12 mm brass head
- special cup wad
- · soft iron shot
- environmentally responsible

Safe to use in barrels without enhanced steel shot proof.

GAME EDITION CARTRIDGES - NOW ALSO AVAILABLE IN CALIBRE 20

Calibre 20 is getting more and more popular, because Rottweil GAME EDITION shotshells have power levels light-weight shot guns in this calibre are much easier to handle. ROTTWEIL is following this trend by offering GAME EDITION cartridges in calibre 20. These game-specific shot shells are available in this calibre for DUCK, PIGEON and PHEASANT.

Also available in the following versions:

GAME EDITION Duck 12/70 (Steel)

GAME EDITION Pigeon 12/70

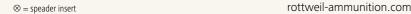
GAME EDITION Hare 12/70

GAME EDITION Crow 12/70

and energy distributions that have been optimized for hunting particular species of small game as in the product names above. They deliver a PLUS of game-specific pattern energy at short, middle and long shooting distances and thus guarantee the best possible success in small game hunting.

5 20 70 N 6 30

Rottweil


GAME EDITION

GAME EDITION Deer 12/70

GAME EDITION Pheasant 12/67.5

GAME EDITION Partridge 12/70

GAME EDITION Goose 12/76 (Steel)

Item No.		Gauge	Shot size in mm	Shot number	Shot weight in g	Ctg/box
ROTTW	EIL PREMIUM LINE LEAD SHOT	CARTRIDGES				
231 67 91	ROTTWEIL MAGNUM	12/76	2.7	No. 6	52	10
231 67 92	ROTTWEIL MAGNUM	12/76	3.0	No. 5	52	10
231 67 93	ROTTWEIL MAGNUM	12/76	3.2	No. 4	52	10
231 67 94	ROTTWEIL MAGNUM	12/76	3.5	No. 3	52	10
231 67 95	ROTTWEIL MAGNUM	12/76	3.7	No. 2	52	10
231 67 96	ROTTWEIL MAGNUM	12/76	4.0	No. 1	52	10
231 67 97	ROTTWEIL MAGNUM	20/76	2.7	No. 6	33	10
231 67 98	ROTTWEIL MAGNUM	20/76	3.0	No. 5	33	10
231 67 99	ROTTWEIL MAGNUM	20/76	3.2	No. 4	33	10
231 68 00	ROTTWEIL MAGNUM	20/76	3.7	No. 2	33	10
231 68 01	ROTTWEIL SEMI MAGNUM	12/70	2.7	No. 6	40	10
231 68 02	ROTTWEIL SEMI MAGNUM	12/70	3.0	No. 5	40	10
231 68 03	ROTTWEIL SEMI MAGNUM	12/70	3.2	No. 4	40	10
231 68 04	ROTTWEIL SEMI MAGNUM	12/70	3.5	No. 3	40	10
231 68 05	ROTTWEIL SEMI MAGNUM	12/70	3.7	No. 2	40	10
231 68 06	ROTTWEIL SEMI MAGNUM	12/70	4.0	No. 1	40	10
231 68 08	ROTTWEIL WAIDMANNSHEIL Pappe	12/70	2.5	No. 7	36	10
231 68 09	ROTTWEIL WAIDMANNSHEIL Pappe	12/70	2.7	No. 6	36	10
231 68 10	ROTTWEIL WAIDMANNSHEIL Pappe	12/70	3.0	No. 5	36	10
231 68 11	ROTTWEIL WAIDMANNSHEIL Pappe	12/70	3.2	No. 4	36	10
231 68 12	ROTTWEIL WAIDMANNSHEIL Pappe	12/70	3.5	No. 3	36	10
231 68 13	ROTTWEIL WAIDMANNSHEIL Pappe	12/70	4.0	No. 1	36	10
231 68 18	ROTTWEIL WAIDMANNSHEIL HV Plastik	12/70	2.5	No. 7	36	10
231 68 19	ROTTWEIL WAIDMANNSHEIL HV Plastik	12/70	2.7	No. 6	36	10
231 68 20	ROTTWEIL WAIDMANNSHEIL HV Plastik	12/70	3.0	No. 5	36	10
231 68 21	ROTTWEIL WAIDMANNSHEIL HV Plastik	12/70	3.2	No. 4	36	10
231 68 22	ROTTWEIL WAIDMANNSHEIL HV Plastik	12/70	3.5	No. 3	36	10
231 68 23	ROTTWEIL WAIDMANNSHEIL HV Plastik	12/70	3.7	No. 2	36	10
231 68 24	ROTTWEIL WAIDMANNSHEIL HV Plastik	12/70	4.0	No. 1	36	10
231 68 25	ROTTWEIL WAIDMANNSHEIL HV Plastik	12/70	4.2	No. 0	36	10
231 68 27	ROTTWEIL WAIDMANNSHEIL HV Plastik	16/70	2.7	No. 6	31	10
231 68 29	ROTTWEIL WAIDMANNSHEIL HV Plastik	16/70	3.0	No. 5	31	10
231 68 30	ROTTWEIL WAIDMANNSHEIL HV Plastik	16/70	3.2	No. 4	31	10
231 68 31	ROTTWEIL WAIDMANNSHEIL HV Plastik	16/70	3.5	No. 3	31	10
231 68 32	ROTTWEIL WAIDMANNSHEIL HV Plastik	16/70	4.0	No. 1	31	10
231 68 33	ROTTWEIL WAIDMANNSHEIL HV Plastik	20/70	2.5	No. 7	28	10
231 68 34	ROTTWEIL WAIDMANNSHEIL HV Plastik	20/70	2.7	No. 6	28	10
231 68 35	ROTTWEIL WAIDMANNSHEIL HV Plastik	20/70	3.0	No. 5	28	10
231 68 36	ROTTWEIL WAIDMANNSHEIL HV Plastik	20/70	3.2	No. 4	28	10
231 68 37	ROTTWEIL WAIDMANNSHEIL HV Plastik	20/70	3.5	No. 3	28	10

Item No.		Gauge	Shot size in mm	Shot number	Shot weight in g	Ctg/box
ROTTV	VEIL PREMIUM LINE COPPER CA	ARTRIDGES				
231 92 11	ROTTWEIL COPPER UNLIMITED	12/70	2.75	No. 6	34	10
231 92 12	ROTTWEIL COPPER UNLIMITED	12/70	3.0	No. 5	34	10
31 92 13	ROTTWEIL COPPER UNLIMITED	12/70	3.25	No. 4	34	10
231 92 14	ROTTWEIL COPPER UNLIMITED MAGNUM	12/76	2.75	No. 6	40	10
231 92 15	ROTTWEIL COPPER UNLIMITED MAGNUM	12/76	3.0	No. 5	40	10
31 92 16	ROTTWEIL COPPER UNLIMITED MAGNUM	12/76	3.25	No. 4	40	10
ROTTV	VEIL PROFESSIONAL LINE LEAD	CARTRIDGES				
31 68 38	ROTTWEIL JAGD braun Plastik	12/70	2.7	No. 6	36	10
231 68 39	ROTTWEIL JAGD braun Plastik	12/70	3.0	No. 5	36	10
231 68 40	ROTTWEIL JAGD braun Plastik	12/70	3.5	No. 3	36	10
231 68 41	ROTTWEIL JAGD braun Plastik	16/70	3.0	No. 5	31	10
31 68 42	ROTTWEIL JAGD braun Plastik	16/70	3.5	No. 3	31	10
31 68 43	ROTTWEIL JAGD braun Streu Plastik	12/70	2.7 ⊗	No. 6	34	10
31 68 44	ROTTWEIL JAGD braun Streu Plastik	12/70	3.2 ⊗	No. 4	34	10
31 68 45	ROTTWEIL JAGD braun Streu Plastik	16/70	2.7 ⊗	No. 6	30	10
ROTTV	VEIL BASIC LINE LEAD CARTRID	GES				
31 68 64	ROTTWEIL SPECIAL 36	12/70	2.5	No. 7	36	25
31 68 65	ROTTWEIL SPECIAL 36	12/70	2.7	No. 6	36	25
31 68 66	ROTTWEIL SPECIAL 36	12/70	3.0	No. 5	36	25
31 68 67	ROTTWEIL SPECIAL 36	12/70	3.2	No. 4	36	25
31 68 68	ROTTWEIL SPECIAL 36	12/70	3.5	No. 3	36	25
31 68 69	ROTTWEIL SPECIAL 36	12/70	3.7	No. 2	36	25
31 68 70	ROTTWEIL SPECIAL 36	12/70	4.0	No. 1	36	25
31 68 73	ROTTWEIL SPECIAL 12 F	12/67.5	2.2	No. 8	32	25
31 68 74	ROTTWEIL SPECIAL 12 F	12/67.5	2.5	No. 7	32	25
31 68 75	ROTTWEIL SPECIAL 12 F	12/67.5	2.7	No. 6	32	25
31 68 76	ROTTWEIL SPECIAL 12 F	12/67.5	3.0	No. 5	32	25
31 68 77	ROTTWEIL SPECIAL 12 F	12/67.5	3.2	No. 4	32	25
31 81 59	ROTTWEIL SPECIAL 12 F / Streu	12/67.5	2.7 ⊗	No. 6	32	25
31 68 78	ROTTWEIL SPECIAL 16 F	16/67.5	2.5	No. 7	27	25
31 68 79	ROTTWEIL SPECIAL 16 F	16/67.5	2.7	No. 6	27	25
31 68 80	ROTTWEIL SPECIAL 16 F	16/67.5	3.0	No. 5	27	25
31 68 81	ROTTWEIL SPECIAL 20 F	20/67.5	2.5	No. 7	26	25
31 68 82	ROTTWEIL SPECIAL 20 F	20/67.5	2.7	No. 6	26	25
31 86 44	ROTTWEIL SPECIAL 20 F	20/67.5	3.2	No. 4	26	25
31 70 60	ROTTWEIL Mark II 30 HV	12/67.5	2.7	No. 6	30	25
231 80 77	ROTTWEIL Mark II 30 HV	12/67.5	3.2	No. 4	30	25

	Item No.		Gauge	Shot size in mm	Shot number	Shot weight in g	Ctg/box	
	ROTTW	EIL GAME EDITION						
M.	240 33 60	ROTTWEIL GAME EDITION DUCK	12/70	3.25	No. 4	32	100	NEW
5	240 86 48	ROTTWEIL GAME EDITION DUCK	20/70	3.0	No. 5	24	100	NEW
	240 33 63	ROTTWEIL GAME EDITION PIGEON	12/70	2.8	No. 6	32	100	NEW
	240 86 52	ROTTWEIL GAME EDITION PIGEON	20/70	2.8	No. 6	30	100	NEW
	240 33 64	ROTTWEIL GAME EDITION HARE	12/70	3.5	No. 3	36	25	NEW
	240 33 66	ROTTWEIL GAME EDITION CROW	12/70	2.9	No. 5.5	34	25	NEW
	240 33 68	ROTTWEIL GAME EDITION DEER	12/70	3.75	No. 2	38	10	NEW
	240 66 01	ROTTWEIL GAME EDITION PHEASANT	12/67.5	2.7	No. 6	28	25	NEW
	240 86 51	ROTTWEIL GAME EDITION PHEASANT	20/70	2.7	No. 6	28	25	NEW
W _{LW}	240 54 50	ROTTWEIL GAME EDITION GOOSE*	12/76	3.25	No. 4	35	10	NEW
5	240 86 54	ROTTWEIL GAME EDITION PARTRIDGE	12/70	2.5	No. 7	32	25	NEW

^{*} Only for shotguns carrying steel proof marks

ROTTWEIL EXTRA LINE CARTRIDGES WITH LEAD BUCKSHOT

231 68 84	ROTTWEIL EXPRESS	12/67.5	4.5	(BBBB)	38 (70P)	10
231 68 85	ROTTWEIL EXPRESS	12/67.5	5.0	(AA)	35 (47P)	10
231 68 86	ROTTWEIL EXPRESS	12/67.5	6.2	(SSSG)	38 (27P)	10
231 68 87	ROTTWEIL EXPRESS	12/67.5	7.4	(SpSG)	28.5 (12P)	10
231 68 88	ROTTWEIL EXPRESS	12/67.5	8.6	(SG/LG)	33 (9P)	10
231 68 89	ROTTWEIL EXPRESS	16/67.5	7.4	(SpSG)	22 (9P)	10

231 68 89	ROTTWEIL EXPRESS	16/67.5	7.4	(SpSG)	22 (9P)	10
ROTTV	VEIL EXTRA LINE CARTRIDGES	WITH SHOTGUN SL	UGS			
231 68 90	ROTTWEIL BRENNEKE MAGNUM	12/76			39	5
231 68 91	ROTTWEIL BRENNEKE CLASSIC MAGNUM	12/70			31.5	5
231 68 92	ROTTWEIL BRENNEKE Classic	12/70			31.5	10
231 68 93	ROTTWEIL BRENNEKE Classic	12/67.5			31.5	10
231 68 97	ROTTWEIL BRENNEKE Classic	20/67.5			24	10
231 74 66	ROTTWEIL EXACT MAGNUM	12/76			32	5
231 71 55	ROTTWEIL EXACT MAGNUM	12/70			32	5
231 70 54	ROTTWEIL EXACT MAGNUM	20/76			26	5
231 70 51	ROTTWEIL EXACT	12/70			32	10
231 71 54	ROTTWEIL EXACT	12/67.5			32	10
231 70 52	ROTTWEIL EXACT	16/70			29	10
231 75 31	ROTTWEIL EXACT	16/67.5			29	10
231 70 53	ROTTWEIL EXACT	20/70			26	10

You can find out everything about our Rottweil brand shotshells at: rws-ammunition.com → About us → Hunting → Rottweil

Item No.		Gauge	Shot size in mm	Shot number	Shot weight in g	Ctg/bo
ROTTV	VEIL STEEL LINE SOFT IRON CA	ARTRIDGES				
	ROTTWEIL STEEL GAME HV- ONLY FOR SHOTGUNS CA	RRYING STEEL PROOF MARKS				
231 69 09	ROTTWEIL STEEL GAME HV	12/70	3.0	No. 5	32	25
231 69 10	ROTTWEIL STEEL GAME HV	12/70	3.25	No. 4	32	25
231 69 11	ROTTWEIL STEEL GAME HV	12/70	3.5	No. 3	32	25
231 69 12	ROTTWEIL STEEL GAME HV	12/70	3.75	No. 2	32	25
231 69 15	ROTTWEIL STEEL GAME HV	20/70	3.25	No. 4	24	10
	ROTTWEIL STEEL GAME- ONLY FOR SHOTGUNS CARRY	ING STANDARD PROOF MARKS				
231 69 18	ROTTWEIL STEEL GAME	12/70	2.6	No. 6.5	32	25
231 69 19	ROTTWEIL STEEL GAME	12/70	3.0	No. 5	32	25
231 69 20	ROTTWEIL STEEL GAME	12/70			32	25
			3.25	No. 4		
231 73 14	ROTTWEIL STEEL GAME	16/67.5	3.0	No. 5	26	10
231 69 22	ROTTWEIL STEEL GAME	20/70	2.6	No. 6.5	24	10
	ROTTWEIL STEEL GAME SPEED 28- ONLY FOR SHOTGU	INS CARRYING STANDARD PROOF	MARKS			
231 69 80	ROTTWEIL STEEL GAME SPEED 28	12/70	3.0	No. 5	28	25
231 69 81	ROTTWEIL STEEL GAME SPEED 28	12/70	3.25	No. 4	28	25
ROTTV	VEIL COMPETITION LINE LEAD	CARTRIDGES				
241 04 80	ROTTWEIL TRAP GOLD 24 HV	12/70	2.4	No. 7.5	24	25
241 03 72	ROTTWEIL SKEET GOLD 24 HV	12/70	2.0	No. 9	24	25
241 04 78	ROTTWEIL SPORT GOLD 24 HV	12/70	2.2	No. 8	24	25
241 04 79	ROTTWEIL SPORT GOLD 28 HV	12/70	2.2	No. 8	28	25
241 04 81	ROTTWEIL SKEET STREU GOLD 24 HV	12/70	2.0 ⊗	No. 9	24	25
240 51 53	ROTTWEIL SPECIAL SKEET	12/70	2.0	No. 9	24	25
231 92 17	ROTTWEIL SPECIAL SPORT	12/70	2.2	No. 8	24	25
231 91 04	ROTTWEIL SPECIAL TRAP	12/70	2.4	No. 7.5	24	25
231 91 05	ROTTWEIL SPECIAL TRAP	12/70	2.4	No. 7.5	28	25
231 94 69	ROTTWEIL SPECIAL SKEET STREU	12/67.5	2.0 ⊗	No. 9	24	25
231 50 65	ROTTWEIL SPECIAL SKEET STREU	12/67.5	2.0 ⊗	No. 9	28	25
231 81 10	ROTTWEIL SUBSONIC TRAP 28	12/67.5	2.4	No. 7.5	28	25
231 69 34 231 69 35	ROTTWEIL FASAN FF ROTTWEIL FASAN FF	12/67.5 16/67.5	2.4	No. 7.5 No. 9	28	25
231 69 36	ROTTWEIL FASAN FF	16/67.5	2.4	No. 7.5	28	25
231 69 37	ROTTWEIL FASAN FF	20/67.5	2.0	No. 9	24	25
231 69 38	ROTTWEIL FASAN FF	20/67.5	2.4	No. 7.5	24	25

ROTTWEIL COMPETITION LINE SOFT IRON CARTRIDGES

	ROTTWEIL COMPETITION STEEL CARTRIDGES - FOR SHOTGUNS CARRYING STANDARD PROOF MARKS					
231 91 0	22 ROTTWEIL STEEL SKEET HV	12/70	2.2	No. 8	24	25
231 91 0	ROTTWEIL STEEL TRAP HV	12/70	2.5	No. 7	24	25
231 91 0	1 ROTTWEIL STEEL TRAP HV	12/70	2.5	No. 7	28	25

	Product	Item No.	Calibre/Use	Ctg./box
RWS RIMFIRE CARTRIDGES				
	Without ball	213 16 41	4 mm short	100
	With No. 7 ball	213 16 76	4 mm short	100
	Without ball	213 16 68	4 mm long	100
	Plus without ball	231 76 96	4 mm long	100
	With No. 7 ball	213 16 84	4 mm long	100

RWS FLOBERT CARTRIDGES

Flobert Ball Bullet BB	231 93 55	6 mm	150
Flobert Conical Bullet CB	231 93 56	6 mm	150
Flobert Ball Bullet BB	213 09 98	9 mm	50
Flobert Conical Bullet CB	213 10 05	9 mm	50
Flobert Double Shot	213 20 95	9 mm 1.9 mm No. 10	50

RWS BLANK CARTRIDGES

RWS LIVESTOCK STUN BLANKS

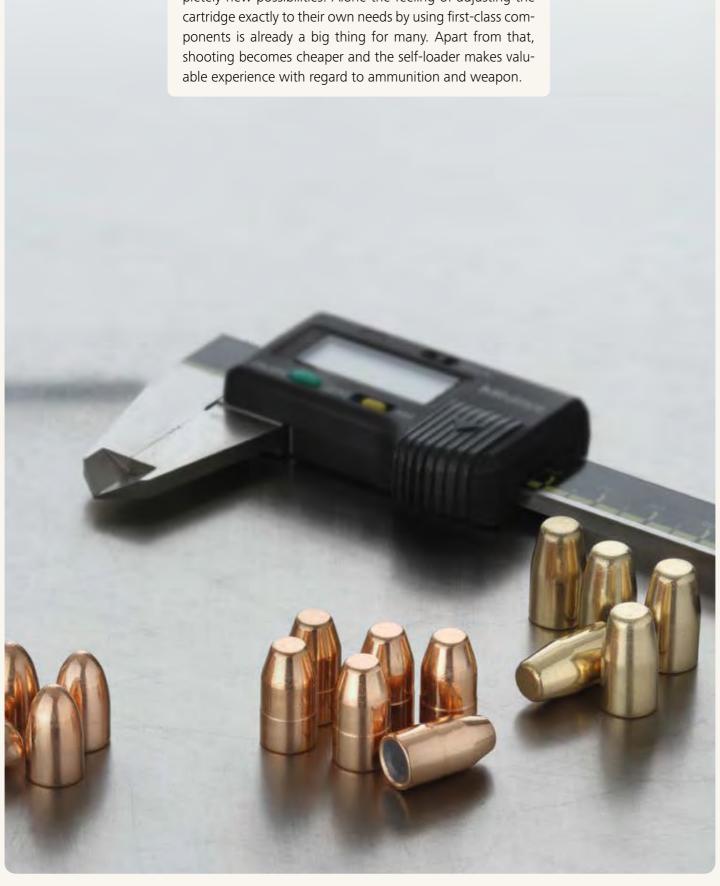
for small livestock	*231 74 26	9x17 mm green	50
for large livestock	*231 74 25	9x17 mm yellow	50
for bulls and oxen	*231 74 28	9x17 mm blue	50
for heaviest livestock	*231 74 27	9x17 mm red	50

RWS SHOTGUN BLANKS

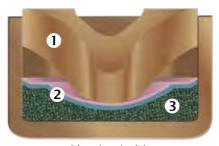
Alarm-	213 48 45	Gauge 12	10
	213 48 53	Gauge 16	10

Product	Item No.	Calibre/Use	Ctg./box
GECO BLANK CARTRIDGES			
	*231 86 31	6 mm Flobert Blank	100
	*231 86 30	.22 long Blank	50
	*231 73 19	8 mm Blank	50
	*231 75 30	9 mm PA Blank	25
	*231 73 22	9 mm PA Blank	50
With extra-bright flash	*231 76 95	9 mm PA Blank Super Flash	25
	*231 86 38	9 mm R Blank (BP-RK)	50
	*231 75 08	9 mm R Blank (Nitro-RB)	50
GECO PLASTIC BLANK / DUMMY CARTRIDGES			
	212 82 84	9 mm Blank Luger	50

Products marked * can be purchased without licence.



RELOADING


The ammunition counts

Handloading or reloading, the 'custom making' of their own cartridges offers both game and target shooters completely new possibilities. Alone the feeling of adjusting the

Item No.	Primer-No.	Ømm	Туре	Suitability	Ctg./box	Sales pack.
RWS-A	ANVIL PRIM	VIERS SII	NOXID (in slide-out pa	ckages)		
210 22 50	4031	4.45	small pistols	6.35; 7.65; 9 mm Luger; .32 S&W long; .38 S&W .38 Special; .40 S&W .357 Mag.	250	2500
210 30 60	4047	4.45	small pistols, Magnum	9 mm Luger; .32 S&W long; .38 Special; .40 S&W .357 Mag.	250	2500
210 23 15	5337	5.33	small pistols	.45 Auto; .45 Colt; .44-40; .44 Mag.; .41 Mag.	250	2500
210 22 85	4033	4.45	small rifle	.22 Hornet; .222 Rem.; 5.6 x 50 5.6 x 50 R; .30 Carbine; .223	250	2500
210 23 58	5341	5.33	large rifle	5.6 x 52 R; 5.6 x 57; .243 Win.; 6.5 x 57; 7 x 57 R; 7 x 64; 8 x 57 IS; .404	250	2500
210 23 90	5333	5.33	large rifle cartridges, Magnum	6.5 x 68; 7 x 64; 7 mm Rem.Mag.; 8 x 68 S	250	2500
RWS-A	ANVIL PRIM	VIERS - L	EAD FREE (in slide-ou	ut packages)		Green Techno
231 56 19	4066	4.45	small pistols	6.35; 7.65; 9 mm Luger; .40 S&W, .32 S&W long; .38 S&W .38 Special; .357 Mag.	250	2500
RWS-E	BERDAN PI	RIMERS	SINOXID (in collapsibl	le packages)		
210 43 34	4506	4.50	small pistols	6.35 mm; 7.65 mm; 9 mm short etc.	250	2000
210 43 50	4521	4.50	small pistols	9 mm Luger etc.	250	2000
210 43 85	5005	5.00	large rifle	diverse pistol cartridges, not standardised	250	2000
210 44 23	5620	5.50	large rifle cartridges	from 6.5 to 9.3 mm etc.	250	2000
RWS F	PERCUSSIO	N CAPS	FOR MUZZLE LOADE	ERS SINOXID (in tins)		
231 93 54	1075	4.47	ribbed	muzzle-loader	250	2500
231 93 53	1075	4.47	ribbed plus (heightened)	muzzle-loader	250	2500
210 38 93	1218	5.90		firing hammer	200	1000
210 52 76	1081	6.12		muzzle-loader	200	1000
RWS-F	PRIMER SII	ii) DIXOV	n slide-out packages)			
210 14 91	7213	6.17	medium ignition 209 S	shotgun cartridges	100	1000
210 16 88	7002	5.68	ignition VI	shotgun cartridges	100	1000

These products can be purchased without licence.

Schematic sectional view:

Anvil 2 lacquered coating 3 priming material

THREE.... TWO.... ONE.... IGNITION

RWS primers are manufactured in a modern advanced production system and are subject to demanding quality control tests. The production is done in the order of punching, cup drawing, priming compound fill, drying and compression as well as pressing in of the anvil. It is accompanied by integrated automatic quality inspections. With the latest optoelectronic testing equipment the deviations in the construction and dimensional accuracy are checked. The priming sensitivity of our primers is adjusted in a way that the ignition is caused with a 100 % certainty at a sufficiently deep and central impact of the firing pin of the weapon.

241 10 38 **SPEED** 16.2 250 .338 50

RIFLE CARTRIDGE BULLETS

Worldwide RWS is the only major manufacturer of rifle car- RWS use the most modern production methods to ensure highest tridges who offers hunting bullets exclusively from their dimensional stability and a flawless surface structure. Only bullets own production. With more than ten different game bul- that comply with the strict internal RWS specifications arrive at the lets and various others for military, police and sporting purgun dealers. poses, RWS is sure to have the widest range of bullets available.

	Item No.	Туре		ght gr	Dia.	bullets/ box
CALIBRE 5.6 MI	VI					
	214 61 77	TMS	3.0	46	.224	100
	214 57 82	МЈ	3.0	46	.224	100
	214 68 43	МЈ	3.0	46	.224	1000
	214 58 47	VMS	3.0	46	.224	100
	214 56 50	TMS	3.24	50	.224	100
	231 33 43	МЈ	3.4	52	.224	100
	231 33 44	МЈ	3.4	52	.224	1000
	214 59 60	TMS	3.6	55	.224	100
	214 57 90	TMS	4.1	63	.224	100
	214 62 31	KS	4.8	74	.224	50
	214 56 42	TMS	4.6	71	.228	50
CALIBRE 6 MM						
	214 64 36	KS	6.2	96	.243	50
	214 56 77	TMS	6.5	100	.243	50

	Item No.	Туре	Wei g	ght gr	Dia.	bullets/ box	
CALIBRE 6.5 MI	VI						
	240 74 46	EVO GREEN	6.0	93	.264	50	GREEN
	214 64 60	KS	8.2	127	.264	50	
	231 14 63	DK	9.1	140	.264	50	
	214 56 85	TMR	10.3	159	.264	50	
CALIBRE 7 MM							
	214 62 90	KS	8.0	123	.284	50	
	231 85 20	EVO GREEN	8.2	127	.284	50	GREEN
	241 10 37	SPEED TIP PRO	9.7	150	.284	50	NEW
	231 59 60	EVO	10.3	159	.284	50	
	214 62 58	KS	10.5	162	.284	50	
	214 55 29	ID Classic	10.5	162	.284	50	
	214 57 07	TMR	11.2	173	.284	50	
	214 60 29	нмк	11.2	173	.284	50	
	214 55 37	ID Classic	11.5	177	.284	50	

	CALIBRE .270	Item No.	Туре	Weight g gr	Dia.	bullets/ box
		214 59 95	нмк	8.4 130	.277	50
		214 64 28	KS	9.7 150	.277	50
	CALIBRE 7.62 M	IM / .3	30			
GRE		231 85 21	EVO GREEN	8.8 130	5 .308	50
		214 63 04	KS	9.7 150	.308	50
		214 54 80	ID Classic	9.7 150	.308	50
NEW		241 10 35	SPEED TIP PRO	10.7 16	5 .308	50
		214 63 71	KS	10.7 165	.308	50
		214 60 45	DK	10.7 165	.308	50
		214 60 10	нмк	11.7 181	.308	50
		214 54 99	UNI Classic	11.7 181	.308	50
		231 59 59	EVO	11.9 184	.308	50
		214 62 07	KS	13.0 200	.308	50
		231 47 19	UNI Classic	13.0 200	.308	50
	CALIBRE 8 MM	S				
GREE		231 85 22	EVO GREEN	9.0 139	.323	50
		214 64 44	KS	11.7 181	.323	50

	Item No.	Туре	Weigh g	nt gr	Dia.	bullets/ box
	231 74 11	EVO	13.0	200	.323	50
CALIBRE 8.6 MN	Л					

CALIBRE 9.3 MM

	231 85 23	EVO GREEN	11.9 184	.366	50	GR
	214 60 02	DK	14.6 226	.366	50	
	214 64 52	KS	16.0 247	.366	50	
	214 60 88	нмк	16.7 258	.366	50	
	214 57 74	TMR	18.5 285	.366	50	
	231 74 12	EVO	18.8 291	.366	50	
	214 55 02	UNI Classic	19.0 293	.366	50	
CALIBRE 10.3 N	IIVI					

214 58	71 KS	16.4 253	.413	50

CALIBRE .375

214 59 28	UNI Classic	19.5 301	.375	50
-----------	----------------	----------	------	----

These products can be purchased without licence.

Explanations: TMS = Soft Point with pointed tip TMR = Soft Point with round tip MJ = Hunting Match with hollow point VMS = Full Metal Jacket with pointed nose KS = KegelspitzDK = Doppelkern HMK = H-Mantel

214 60 53 **HMK** 12.1 187 .323 50

112 | AMMUNITION | RWS **GECO** | AMMUNITION | 113

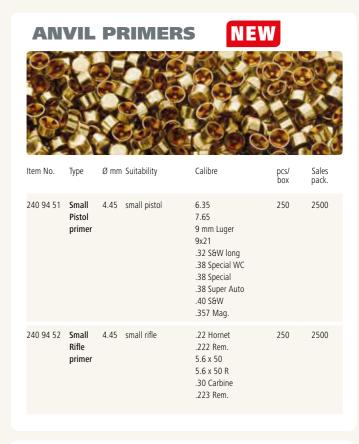
Rifle cartridge cases must withstand extreme pressures of up to • With 10 % overpressure in specially prepared test barrels 7,000 bar and experts consider them to be the life insurance of the shooter. To maintain the highest levels of quality and safety we have developed a series of demanding quality control tests. At the beginning of the production process samples are taken from every batch, • With 30 % overpressure in test barrels that are made according loaded and exposed to excessive stress tests:

- with partially inadmissible headspaces of 0.2 mm and 0.4 mm. To simulate rifles that are still being used although possibly shot
- to CIP specifications.

A case that passes this quality control is of special format. It is a RWS.

RWS RIFLE CASES FOR BOXER PRIMERS

Item No.	Calibre	Cases/box
214 44 68	.22 Hornet	20
214 45 06	.222 Rem.	20
214 45 22	.223 Rem.	20
214 46 03	5.6 x 50 Magnum	20
214 45 81	5.6 x 50 R Magnum	20
214 45 57	5.6 x 52 R	20
214 45 73	5.6 x 57	20
214 46 46	6.5 x 55 SE	20
214 46 38	6.5 x 57	20
214 46 54	6.5 x 57 R	20
214 46 62	6.5 x 65 RWS	20
214 46 70	6.5 x 65 R RWS	20
214 46 89	6.5 x 68	20
214 47 19	.243 Win.	20
214 47 27	.270 Win.	20
214 44 84	7 x 57	20
214 44 92	7 x 57 R	20


Item No.	Calibre	Cases/box
214 48 08	7 x 64	20
214 48 32	7 x 65 R	20
214 48 75	7 mm Rem. Magnum	20
214 44 33	.30-06	20
214 47 51	.308 Win.	20
214 47 94	.30 R Blaser	20
214 47 78	.300 Win. Mag.	20
214 49 48	8 x 57 JS	20
214 49 80	8 x 57 JRS	20
214 50 30	8 x 68 S	20
214 50 49	8.15 x 46 R	20
214 50 81	9.3 x 62	20
214 51 03	9.3 x 64	20
214 51 46	9.3 x 74 R	20
214 51 97	10.3 x 60 R	20
214 51 62	.375 H & H Mag.	20

RIFLE CARTRIDGE BULLETS

These products can be purchased without licence.

These products can be purchased without licence.

GECO CASES FOR PISTOL AND REVOLVER CARTRIDGES

Item No.	Calibre	Cases/box
231 81 29	9mm Luger	100
231 81 30	9mm Luger	1000
231 81 31	.38 Super Auto	100
231 81 32	.38 Super Auto	1000
231 81 33	.40 S&W	100
231 81 34	.40 S&W	1000

Item No.	Calibre	Cases/box
231 81 35	.45 Auto	100
231 81 36	.45 Auto	1000
231 81 37	.38 Special	100
231 81 38	.38 Special	1000
231 81 39	.357 Mag	100
231 81 40	.357 Mag	1000

GECO BULLETS FOR PISTOL AND REVOLVER CARTRIDGES

Item No.	Calibre	Style	Weight g	gr	Dia.	Bullets/Box
240 04 00 240 04 01	9mm	FMJRN	8.0	124	.355	200 1500
231 90 10 231 90 11	9mm	HEXAGON	8.0	124	.355	200 1500
231 81 47 231 81 48	9mm	FMJFN	10.0	154	.355	200 1500
231 81 49	9mm	НР	7.5	115	.355	200
231 81 50 231 81 51	.40 S&W	FMJFN	11.7	180	.401	200 1500
231 81 53	.45 Auto	FMJRN	14.9	230	.451	200
231 81 54	.45 Auto	НР	14.9	230	.451	200
231 81 55 231 81 56	.38 SP/.357 Mag.	FMJFN	10.2	158	.357	200 1500
231 81 57	.38 SP/.357 Mag.	НР	10.2	158	.357	200
231 94 83 231 94 84	.38 SP/.357 Mag.	HEXAGON	11,7	180	.357	200 1500

POWDER

There is a suitable type of powder for every purpose – it is gelatinized nitrocellulose, partially with special additives. Basic materials, form and final treatment decide whether it burns slowly or fast, and how well it functions with the different calibres and bullets. You differentiate between monobasic, bibasic and tri-basic propellant powders. Powder that is made of pure nitrocellulose is called monobasic. In case of ammunition with relatively low bullet weight but high muzzle velocity, i. e. with high-performance ammunition with extended trajectory, the energy of pure nitrocellulose is no longer sufficient. It is increased by adding higher energy like nitroglycerine or similar materials. All propellant powders are without exception subject to the requirements of the law on explosives. We buy our propellant powders from renowned European powder manufacturers. Before their use we test them in the chemistry lab against deterioration whether the specific features of the powder type has been preserved.

FOR RIFLE CARTRIDGES

Product	Amount	Item No.						
R 901	Canister 500 g	240 71 91						
is primarily s	uitable for small capacity ca	5.6 x 50 (R) Magnum cartridges. This powder ises when light bullets are used. In additio, loads with light to medium weight bullets.						
R 902	Canister 500 g	240 71 92						
This powder burns slower than the R 901 and is therefore suitable for many types of cases ranging from the .222 Rem. to the 9.3 x 74 R. It is generally considered to be suitable for medium cases and light to medium-weight bullets as well as for short barrels.								

This is the universal powder for all medium-sized rifle cartridges and bullets of normal weight. It is suitable for calibres ranging from 5.6 x 50 to 9.3 x 74 R. Decisive for the universality of R 903 is not only its adoptability to many different types of case forms, but also its flexibility in terms of the ignition, which still leads to uniform and complete burn-up of the powder even when the load has a low density.

This powder burns more slowly than the R 907 and can possibly cause weaker gas pressure in suitable cases while at the same time exhibiting the same performance. In comparison to the next slower R 905 Rottweil Powder, the extremely progressive powder of the Rottweil product range, the R 904 has the advantage of requiring less volume. Thus, if the case volume is limited, better performance can be achieved.

R 905	Canister 500 g	240 71 95
-------	----------------	-----------

This is the most progressive powder in the Rottweil product range and is particularly well suited for loading large volume high-performance cartridges when heavy bullets are to be shot from long barrels. The range of application extends from 5.6×57 to 8×68 S and other Magnum cartridges.

R 907	Canister 500 g	240 71 9
-------	----------------	----------

In terms of its burn-up rate, the R 907 is between the R 903 and the R 904. It fills the relatively large void between the two types of powder. Load data has been recorded for several different calibres. It appears to be particularly well suited for 8 mm cartridges (.318 diameter).

Warning - Fire or projection hazard. - Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. - Keep only in original packaging. - Wear protective gloves/protective clothing/eye protection/face protection. - In case of fire: Explosion risk. Evacuate area. DO NOT fight fire when fire reaches explosives.

116 | OPTICS | **GECO** GECO | OPTICS | 117

GECO

GECO offers the ideal introduction to the field of high-quality riflescopes and observation optics. A modern design, the use of selected materials and a level of optical and mechanical quality and performance that is unparalleled in this price class define a new standard. Despite their extremely compact and lightweight form,

technical precision coupled with practical suitability for hunting and durability were the priorities during their development. With their focus on what is essential, these products are the perfect companions in any hunting situation.

GECO GOLD

GECO Gold optics stand for the highest levels of quality and performance. State-of-the-art coating technologies combined with the use of special types of glass and other high-quality materials define this portfolio of optical products with their outstanding performance characteristics. Transmission values, fields of view, edge

definition and exit pupils compare favourably with premium class optics. Optimum ergonomics and an extremely compact and lightweight design are combined with the unrivalled value for money that GECO is renowned for. GECO Gold products stand for maximum reliability in any hunting situation.

GECO BLACK

GECO Black optics take the extremely high optical quality standard of GECO Gold one step further. They also offer unbeatable value for money that is unparalleled in this class. These products were especially developed for sporting and tactical shooting. High zoom ratios, ballistic solutions, reticles in the 1st image plane and a central tube diameter of up to 34 mm define this class of very compact products. All the optical elements have a lens thread and are supplied with a flip cover as standard.

HD glass for images with

ED glass for razor-sharn

Extended field of view for optimum observation

Lightweight, rugged

Eyecups made from highest-quality aluminiun

Reticle in the first image plane for tactical shooting

34mm central tube diameter for large adjustment ranges

Tactical turret for fast and accurate bullet drop compensation

Tool-free resetting for ultra-fast locking

Extremely ergonomic thanks to the microbridge

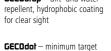
Central focusing with integrated dioptre adjustment makes handling easy

Lightweight construction for optimum handling

Hard-shell carry case for maximum protection during

5-year guarantee (warranty on electronic components limited to 24 months)

10-year guarantee (warranty on electronic components limited to 24 months)



GECObright – maximum transmission in even the most adverse lighting conditions

GECOdrop - dirt- and waterrepellent, hydrophobic coating for clear sight

coverage

options: distance. angle, ballistic range

With integral

rangefinder

243 m

GECOcontrol – intelligent automatic shutoff for maxi-

GECOhrac - height elevation

GECO TR1 - Accurate long-

range shooting without reticle

mum energy efficiency

and target turret in one

GECO

Red dot sights

RED DOT 1x20

The ideal companion for driven hunts over difficult terrain. The finely dimmable illuminated dot with a diameter of 2 MOA facilitates guick, intuitive and reliable target acquisition in every situation. The built-in weaver mount means the GECO Red Dot can be attached quickly and easily.

NEW

RED DOT 1x20 GenII

The new, waterproof GECO Red Dot 1x20 Gen II is a reliable companion for driven game hunts in any weather. The sight comes standard with clear flip-up covers so that a clear view can be had at any time. The adjustable 2 MOA red dot, which has 11 settings, helps to define the target quickly - even under difficult lighting. Through the use of modern lowenergy technology, battery life can be as long as 30,000 hours! The sight can be quickly and securely mounted with its integral Weaver base.

OPEN RED DOT SIGHT

The new GECO Open Red Dot Sight is exceptionally compact, lightweight and at the same extremely robust. With its open field of view, it is the optimal companion on driven hunts for targets at short and medium distances with intuitive target acquisition. The fine 2 MOA dot is adjustable to six brightness levels. The specially coated and scratch-resistance glass lens prevents reflections. Replacing batteries is exceedingly user-friendly and can be done on the side compartment even when mounted, using commercially available mounting adapters on all bases. ATTENTION: Not suitable for use on handguns!

MULTIDOT

The GECO MultiDot is a robust and exceptionally flexible red dot sight. It has the capacity to switch between 8 different reticles (3 or 10 MOA dot, circle dot, etc.) in either green or red without having to zero in again. There are five brightness settings, and the batteries are accessible from the side even when mounted. The integrated quick-release mount allows for fast mounting on Weaver/Picatinny rails.

GECO Red dot sights

Item no.	Product	Reticle	Field of view at 100 m	Central tube Ø	Overall length	Weight approx.
231 92 19	Red Dot 1x20	2 MOA Dot	100 m	30 mm	67 mm	130 g
241 07 26	Red Dot 1x20 GenII	2 MOA Dot	100 m	20 mm	68 mm *	112 g
240 71 55	Open Red Dot Sight	2 MOA	100 m	19x23 mm	46 mm	30 g
240 71 56	MultiDot	Changing reticle	100 m	33x24 mm	95 mm	260 g

GECO Riflescopes

The wide range of GECO riflescopes offers a riflescope for practically

The range includes riflescopes with 3x, 4x and 5x zoom, leavevery imaginable situation. From tracking to hunting from a blind to ing little to be desired. driven hunts, from daytime to dusk and even nighttime hunting, but also for long range shots and sport shooting.

The 3x zoom riflescopes catch the eye with their slender and extremely compact length and low weight. The imperial optics from this range are excellently suited to be mounted on older mounts or weapons with a narrow build. The excellent optical quality is reflected in the very good fields of view and high transmission

values. Large lens diameters ensure sufficient light reserves that extend into twilight. The illuminated GECOdot with automatic shutoff and the integrated GECOtrac target turret are unique features in

3-9x42/40i

This all-rounder has proven its worth for decades and is extremely compact and easy to handle, making it ideal for stalking or sitting game. Thanks to its illuminated reticle and greater lens diameter, it is also suitable for twilight hunting.

fig. 3-9x40i

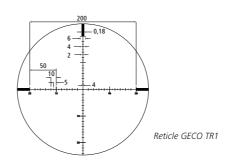
4-12x42/50i

Higher magnification renders precise shooting over long distances. Thanks to the large lens diameter and illuminated reticle, it is also ideal in adverse lighting conditions.

fig. 4-12x50i

The 4x zoom riflescopes have a central tube diameter of 30 mm and stand out thanks to their optical performance specs for transmission, field of view and exit pupil. With the 3-12x56 and the

6-24x50, the range includes two absolute classics with outstanding performance specs for this price class.


3-12x56/56i

The classic all-rounder for hunting from a blind and nighttime hunting. Its 56 mm diameter lens, high transmission, and illuminated reticle offer increased reliability, even in extremely unfavourable lighting.

6-24x50

The specialist for long distances. Its high magnification is perfect for accurate shooting at long distances. This is supported by the GECO TR1 reticle and the high optical performance allows the recognition of even the finest details at long distances.

* with flip-up-covers: 82 mm

GECO Riflescopes

stand out for their optimized zoom factor and thus increased flexmance.

The 5x zoom riflescopes with a central tube diameter of 30 mm ibility and versatility without sacrificing their high optical perfor-

1-5x24i

The perfect companion for driven hunts. Its large field of view ensures the shooter always has the ideal overview and provides increased safety. The 5x zoom enables fast shooting even at long distances.

3.5-18x56i

This riflescope ensures you are always ready for near or far shots. Even in unfavourable lighting, thanks to its large lens diameter and the illuminated reticle. The focus here is on its flexibility and high optical performance.

GECO Riflescope	es					
Item no.	Product	Reticle	Field of view at 100 m	Central tube Ø	Overall length	Weight approx.
240 37 11	3-9x42	Plex	15.0 – 5.5 m	1"	300 mm	400 g
240 37 13	3-9x40i	4	12.0 — 4.0 m	1"	317 mm	428 g
240 37 14	4-12x42	Plex	11.0 — 4.5 m	1"	310 mm	390 g
240 37 15	4-12x50i	4	9.0 – 3.0 m	1"	336 mm	516 g
240 64 72	3-12x56	4	12.5 – 3.0 m	30 mm	340 mm	674 g
240 64 75	3-12x56i	4	12.5 – 3.0 m	30 mm	340 mm	674 g
240 64 71	6-24x50	TR1	5.6 – 1.5 m	30 mm	362 mm	750 g
240 64 76	1-5x24i	4	37.0 – 6.0 m	30 mm	260 mm	550 g
240 64 77	3.5-18x56i	4	11.8 – 2.2 m	30 mm	335 mm	850 g

GECO optics are not yet available in all countries. Please ask your dealer.

NEW

GECO Binoculars

The binoculars in the GECO range offer the perfect introduction to mission values as well as a shortened close focus. Their ruggedness, high-quality observation optics with unbeatable value for money. The slimline, ergonomic design has been combined with high-quality materials. The entire housing is made of magnesium. Thanks to ED glass, multi-layer coating and adjusted optical calculation, they offer wide fields of view, high edge definition and excellent trans-

low weight and optical performance make them unrivalled representatives of their type.

All models come with a tripod mount, carry strap and hard

8x32/10x32

The perfect companion for virtually every observation scenario. Extreme compactness and low weight make for optimum handling. Their optics deliver razor-sharp images in good ambient light.

fig. 8x32

8x42/10x42

Thanks to a wide field of view, they offer an excellent overall view coupled with a steady image. A greater lens diameter, ED glass and GECObright multi-layer coating create sufficient light reserves for use into advanced twilight.

8x56/10x56

Both powerful and effective. The compact and lightweight design combined with the very large fields of view and the large exit pupil make spotting a relaxed activity. The high transmission values create bright and high-contrast images for hunting until nearly nightfall.

GECO Binoculars	S					
Item no.	Product	Exit pupil	Field of view at 100 m	Close focus	Overall length	Weight approx.
240 37 24	8x32	4	136 m	2	125 mm	500 g
240 37 25	10x32	3.28	105 m	2.5	125 mm	500 g
240 37 26	8x42	5.25	142 m	2	145 mm	670 g
240 37 27	10x42	4.2	113 m	2.5	145 mm	670 g
240 37 28	8x56	7	129 m	2.3	192 mm	1200 g
240 37 29	10x56	5.6	114 m	2.5	192 mm	1200 g

GECO GOLD Riflescopes

The GECO Gold riflescopes combine high zoom ratios with outstanding optical performance. They offer flexible use in virtually any hunting situation and in the most adverse lighting conditions, delivering excellent performance in terms of transmission, field of view and exit pupil. This is made possible by the use of state-ofthe-art multi-layer coatings and optical calculations. Apart from the fine GECOdot illuminated dot, emphasis was placed on a large

adjustment range and tool-free resetting together with an integrated GECOtrac target turret.

The extremely compact form is made from high-quality materials and includes an integrated lens thread. The high level of quality and reliability is reflected in the 10-year guarantee.

1-6x24i

The specialist for drive or big game hunting. Its wide field of view ensures fast and reliable target acquisition. The 6x zoom also makes precise, medium-distance shooting possible.

2.5-15x50i/56i

The all-rounder for virtually any hunting scenario. Thanks to parallax adjustment, the zoom ratio and field of view enable use ranging from drive hunting to precise distance shooting. A large lens diameter offers maximum accuracy in even the most adverse conditions.

fig. 2.5-15x50i

1-8x24i

This all-rounder covers the full range: from drive hunting to longdistance shooting. Maximum zoom ratio, wide field of view, fine illuminated dot and large exit pupil offer maximum accuracy.

GECO GOLD Riflescopes								
Item no.	Product	Reticle	Field of view at 100 m	Central tube Ø	Overall length	Weight approx.		
240 37 18	1-6x24i	4	38.0 - 6.0 m	30 mm	269 mm	530 g		
240 37 19	2.5-15x50i	4	14.4 – 2.5 m	30 mm	381 mm	700 g		
240 37 20	2.5-15x56i	4	15.0 – 2.5 m	30 mm	381 mm	780 g		
240 37 21	1-8x24i	4	36.0 – 4.5 m	30 mm	273 mm	610 g		

GECO GOLD Binoculars

The binoculars in the GECO Gold line are members of the absolute premium class. HD glass optical design combined with state-ofthe-art multi-layer coating results in outstanding optical performance in terms of transmission, edge definition, close focus and colour reproduction. Thanks to the GECOdrop hydrophobic coating, all optics are dirt- and water-repellent. The innovative microbridge results in a high-quality and particularly ergonomic design. A magnesium housing, a coated magnesium bridge and highquality aluminium adjustable eyecups render maximum ruggedness

with minimum weight. Dioptre adjustment has been integrated into the central focusing wheel. If you are looking for uncompromising quality in binoculars with very good value for money, look

All models come with a tripod mount, carry strap, hard case and a 10-year guarantee.

8x42/10x42

The products combine compactness and low weight with topquality optical performance. They are the optimum companion for sitting, drive or stalking hunts. Thanks to the extremely short close focus, they ensure unforgettable perceptions of nature at even the shortest of distances.

8.5x50/10x50/12.5x50

Thanks to a good field of view, large exit pupil and HD glass, they deliver extremely bright, sharp and high-contrast images even in the most adverse lighting conditions. This enables observation and response over large distances, resulting in an impressive and unforgettable visual experience.

GECO GOLD Bin	oculars					
Item no.	Product	Exit pupil	Field of view at 100 m	Close focus	Overall length	Weight approx.
240 37 30	8x42	5.25	125 m	2	156 mm	830 g
240 37 31	10x42	4.2	112 m	2	156 mm	840 g
240 37 32	8.5x50	5.9	105 m	3	175 mm	940 g
240 37 33	10x50	5	103 m	3	175 mm	960 g
240 37 34	12.5x50	4	95 m	3	175 mm	965 g

GECO Binocular RF

The GECO RF stands out not only because of its outstanding optics, but also due to its precise and reliable built-in rangefinder and its rock-solid ballistics. The magnesium housing and the high-grade aluminum eye cups make this binocular very robust, and therefore a natural companion for nature lovers. The GECO 10x50 RF unites

top-grade optics with first-class laser technology at an attractive

The GECO 10x50 RF comes already equipped with a carry strap and a hard case.

10x50 RF

The GECO 10x50 RF pairs a magnesium housing with a robust and shock-absorbing rubber armor so that it can offer an optimal moving parts. With the use of high-quality HD optics in combination temperature, and its integral compass aids in land navigation. with cutting edge multiple lens coatings, top performance in light transmission, field of view, edge sharpness and color fidelity are

achieved. The distance to all objects from 10 to 1600 meters away can be simply and reliably determined at the touch of a button. In protection for sensitive optical and electronic elements as well as addition, the GECO RF can measure both angle of elevation and

Item no. Product Exit pupil Field of	of view at 100 m Clos	ose focus Overa	erall length Max.	x. width Measurin		taiaht annsau
			raii ierigiri iviax.	x. widtii iviedsuiii	ng range W	Veight approx.
240 64 79 10x50 RF 5	110 m	3 16	160 mm 130	30 mm 10 m –	1600 m	1000 g

GECO BLACK

Riflescopes

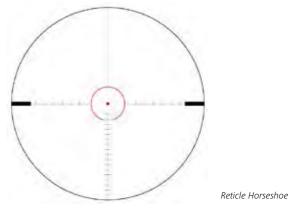
This class includes an 8x zoom with a 34 mm tube and a 6x zoom with a 30 mm tube. The GECO Black line mirrors the outstanding optical performance specs of the GECO GOLD line, but was developed specifically for tactical and dynamic shooting. This includes high adjustment travel, the illuminated reticle in the first

focal plane, the integrated target turret, as well as the included flip

You can be sure of high quality and reliability with our 10-year guarantee.

1-8x24i (34 MM)

The classical representative of a tactical riflescope in a militarystyle design. Thanks to its horseshoe reticle, intuitively fast shots at close distance can be combined with precise shooting over greater ranges. 1st image plane, 34 mm central tube and lockable target turret leave nothing to be desired.



1-6x24i (30 MM)

Compared to its bigger brother, the 1-8x24i, the 1-6x24i has a central tube diameter of 30 mm and is therefore significantly more compact. With its field of view measuring 38 m and a horseshoe reticle in the first focal plane, this riflescope is perfectly designed for dynamic shooting.

GECO BLACK Rifl	escopes					
Item no.	Product	Reticle	Field of view at 100 m	Central tube Ø	Overall length	Weight approx.
240 37 22	1-8x24i	Horseshoe	35.0 – 4.4 m	34 mm	273 mm	770 g
240 37 23	1-6x24i	Horseshoe	38.0 - 6.3 m	30 mm	269 mm	550 g

GECO optics are not yet available in all countries. Please ask your dealer. geco-optics.com 126 | SUBSIDIARIES | | DISTRIBUTORS | 127

SUBSIDIARIES

AUSTRIA

RUAG Ammotec Austria GmbH IZ-NÖ-Süd. Strasse 7 - Obj. 58 D 2355 Wiener Neudorf

phone: +43 2236 677735 +43 2236 677736

BELGIUM

RUAG Ammotec Benelux BVBA Kapelleveldstraat 18 2530 Boechout (Antwerpen) phone: +32 3 4557508 +32 3 4540446

Ruag Ammotec Finland OY Teollisuustie 4A2 66100 Maalahti

phone: +358 6 347 1 800 +358 6 347 1 801

FRANCE

RUAG Ammotec France 47. Avenue des Genottes 95800 Cergy Pontoise phone: +33 1 34351591 +33 1 34351599

GREAT BRITAIN

RUAG Ammotec UK Ltd. Upton Cross, Liskeard Cornwall PL14 5BQ

phone: +44 1579 362319 +44 1579 36403

ITAIY

RUAG Ammotec Italia s.r.l. Via Galileo Galilei No. 56 25046 Cazzago San Martino - Brescia

phone: +39 030 7255323 +39 030 7255323

SWEDEN

RUAG Ammotec Sweden AB Dammbrovägen 1 691 80 Karlskoga

phone: +46 10 602 34 00 +46 10 602 34 10

SWITZERLAND

RUAG Ammotec Switzerland Ltd. Im Hoelderli 10 8405 Winterthur

phone: +41 52 23515376 +41 52 2322738

USA

RUAG Ammotec USA Inc.

5402 East Diana Street FL 33610 Tampa

+1 813 6260078

phone: +1 813 6260077

DISTRIBUTORS

ANDORRA

Ando Arm SL Armeria Andorrana Avda. Riberaygua, 33 33 AD 500 Andorra La Vella

phone: +376 820 888 +376 860 222

AUSTRALIA

Outdoor Sporting Agencies 27 Efficient Drive Truganina VIC 3029

phone: +61 3 8353 2626 +61 3 8353 2627

BOSNIA-HERZEGOVINA

JACIMOVIC DOO Karadjordjeva 83 78000 Banja Luka

phone: +387 51 215 030 +387 51 215 030

BULGARIA

Star Force Ltd. 29, Ekzarh Josiph Str. 1000 Sofia

phone: +359 2 9872310 +359 2 9808039

BULGARIA

Special Tactical Supplies 46 "Shipchenski prohod" Blvd. 1574 Sofia

phone: +359 2 9712257 +359 2 9712257

BULGARIA

ZARIMEX Ltd. Osmi Dekemvri blvd No. 1 1700 Sofia

phone: +359 2 874 10 80 fax: +359 2 876 44 28

CANADA

MD Charlton Company Units 3 and 4 4100-B Sladeview Cres

Mississauga Ontario Canada L5L 5Z3 phone: +1 905 6259846

+1 905 6253538

CANADA

North Sylva Co. 19 Ingram Drive M6M2L7 Toronto Ontario phone: +1 416 2424867

CANADA

BowMac/GunPar (1996) Inc. 9094 Cavanagh Rd. KOA 1B0 Ashton, Ontario phone: +1 800 6682509

CHINA

China Glory Sporting Goods Promotion Company 3, Tiyuguan Road 100763 Beijing P.R.C.

CROATIA

Lovac trgovina d.o.o.

Teslina 4 10000 Zagreb

phone: +385 1 4811 854 +385 1 4811 834

CYPRUS

Pedmar Handels Ltd. 32. Nikolaou Rossou Str. 6021 Larnaka phone: +357 24667776

CZECH REPUBLIC

KOZAP Uherský Brod zbrane a strelivo, spol. sr. o. U kostela 134 68754 Banov

phone: +420 572 646280 +420 572 646220

DENMARK

GUNTEX A/S Jägervej 7 6900 Skjern

phone: +45 96 802000 +45 96 802010

ESTONIA

Trapper Ltd. Voru 80 50111 Tartu

phone: +372 7 343900 +372 7 343991

GREECE

DORKAS S.A Finos Film Str. Xousmiza-Spata-Attiki, 19004 Athens

phone: +30 210 6019920 +30 210 6019930

GREECE

BARREL Advanced Armament 564 Vouliagmenis Ave. & 14 Ethn. Antistasseos str.

16452 Argiroupoli, Athens phone: +30 210 9945161 +30 210 9941956

HUNGARY

Harmónia 91 Ltd. Széchenyi U. 10 4025 Debrecen

phone: +36 52 430468 +36 52 412633

HUNGARY

phone: +36 1 280 83 11

Magnum Vadász és Hajós Kft. Dr. Csányi L. krt. 55 2600 Vac

ICELAND

HLAD ehf Bíldshöfða 110 Reykjavík phone: +354 567 5333

INDIA

The National Rifle Association of India NRAI House 51-B, Institutional Area Tughlakabad 110062 New Delhi

phone: +91 11 29964091 +91 11 29964090

INDIA

SYNDICATE INNOVATIONS INTERNATIONAL LIMITED E-14, Sahibabad Industrial Area Site-IV, Ghaziabad-201010.

phone: +91 120 4167639 fax: +91 120 4167620

INDIA

HANS WRAGE & CO GMBH Alstertor 17 20095 Hamburg, Germany phone: +49 40 7810710 fax: +49 40 78107122

INDONESIA

P.T. Maju Purnama Abadi Jl. Mangga Besar IX No. 2BM 11170 Jakarta Barat - Indonesia phone: +62 21 3454 136 +62 21 3453 548

INDONESIA

PT. Megah Karunia Mandiri Kel. Situsaeur Kec. Bojongloa Kidul 40234 Kota Bandung, Jawa Barat phone: +62 822 9955 6655

SRAEL

L.H.B. Ltd. 28 Menachem Begin Rd 61364 Tel Aviv phone: +972 3 6338440

JAPAN

GINZA GUN LIMITED 14-19, Ginza 6 Chome 104-0061 Chuo-ku, Tokyo phone: +81 3 62266133 +81 3 35431444

JAPAN

ISHII GUNSHOP CO., LTD 9-3, 1-Chome, Uemachi, Chuo-Ku, 0005 Osaka 540

phone: +81 6 67620266 +81 6 67620268 fax:

JAPAN

Gunsmith of Kunimoto Co.LTD Shimogyo Teramachi Bukkoji Kyoto 600-8032

phone: +81 75 351 3037 +81 75 351 3041

KASAKHSTAN

HANS WRAGE & CO GMBH Alstertor 17 20095 Hamburg, Germany

phone: +49 40 7810710 +49 40 78107122

KOREA

Il Heung GS Co. Ltd. RM. 401. Sung Bldg. 571-13 Kongnung-Dong, Nowon-GU phone: +82 2 974 7400 fax: +82 2 976 5828

LATVIA

SIA Purnavu muiza Martinmuiza Marupes pag. 1002 Rigas raj.

phone: +371 67708420 +371 67886939

LITHUANIA

SIA Purnavu muiza Martinmuiza Marupes pag. 1002 Rigas raj., Latvia phone: +371 67708420 fax: +371 67886939

MACEDONIA

Mikei INTERNACIONAL Kamnik b.b. 1000 Skopje

phone: +38 922523523

MALAYSIA

DRii WATAN SDN BHD, C-5-7, Blok C. Park Avenue Office, No. 5 Jalan Pju 10/1, Damansara Damai, 47830 Petaling Jaya, Selangor phone: +60 361578838

MALAYSIA

Perusahaan Al Nur. No. 39. Arked Sri Teruntum. Jalan Mahkota 25000 Kuantan

MALTA

Shooting Supplies Żebbiegħ Road, M

darr MGR8036

phone: +356 2157 4683

128 | DISTRIBUTORS | | DISTRIBUTORS | 129

MONGOLIA

HANS WRAGE & CO GMBH Alstertor 17

20095 Hamburg, Germany phone: +49 40 7810710 fax: +49 40 78107122

MONTENEGRO

KULJAČA COMPANY D.O.O. BEČIĆI.UL.STEVANA ŠILJEGOVIĆA BR.7 85310 Budva

NAMIBIA

L&O Group SA (Ptv.) Ltd. Plot 7 Mountain drive 186 Pretoria, South Africa phone: +27 7 95015611

NEW ZEALAND

Shooting Stuff Limited PO Box 202083 Southgate 2246 AUCKLAND

NEW ZEALAND

Aoraki Ammunition Company Limited 14 Branscombe Street 7910 Highfield Timaru phone: +64 274516783

NORWAY

NORMA AS Nils Hansens vei 7 667 Oslo

phone: +47 22 07 13 00

NORWAY

Jakt & Friluft AS Bryggeriveien 4 4848 Arendal

phone: +47 37 060700 +47 37 060702 fax:

POLAND

M.K. Szuster Al. Waszyngtona 38/40 03-913 Warszawa

phone: +48 22 6176181 +48 22 6176335

PORTUGAL

Luis M. P. Gil, Distribuição Lda Av. Egas Moniz nº 15 2135-232 Samora Correia

phone: +351 263 656 210 fax: +351 263 656 210 OATAR

Qatar Shooting & Archery Association P. O. Box 5225 Doha,

phone: +974 44953114 fax: +974 44170140

ROMANIA

SC ARROW International SRL Str. Apusului, nr. 5 Sat Catelu. Comuna Glina 077105. Judet Ilfov phone: +40 21 2210690 +40 21 2211210

ROMANIA

SC Material Group SRL Str. Decebal nr. 96 410219 Oradea

phone: +40 2 59474040 fax: +40 2 59406422

RUSSIA

RUSIMPEKS OOO Kotelnicheskaya Str. 24a 140 000, Lubertsv

phone: +7 495 554 70 67

RUSSIA

Kolchuga 000 Varvarka Str., 3 109 012, Moscow phone: +7 495 234 34 43

RUSSIA

Bars OOO Professora Popova Str., 23 197 376, St. Petersburg phone: +7 812 234 91 29

RUSSIA

Buryi Medved OOO Dobrolubova str., 1 620 014, Ekaterinburg phone: +7 343 376 46 05

RUSSIA

Vympel 000 Chernaya Gryaz, 2L 141 580, Moscow region phone: +7 495 761 41 31

RUSSIA

Izhevskiy Arsenal OOO Votkinskoe shosse, 298 462 039, Izhevsk

phone: +7 3412 90 45 32

RUSSIA

Mir Ohoty OOO Uralskaya str., 991/3 350 080 Krasnodar phone: +7 8612 34 33 59

RUSSIA

Ruzheynaya Kompania GOU OOO Deryabina prospect 3 / 4, ap. 33 426 011, Izhevsk

phone: +7 3412 23 03 23

RUSSIA

Rys OOO 202 Mikrorayon, 1/2 677 000, Yakutia

phone: +7 4112 33 32 95

RUSSIA

Temp 000 Zavodskava str., 2 142 181, Klimovsk

phone: +7 495 996 89 08

RUSSIA

TKN 17 000 Stanzionnaya str., 30A, 203/67 630 108, Novosibirsk phone: +7 383 364 01 00

SERBIA

Capriolo Hunting Edvarda Kardelia bb 24300 Backa Topola phone: +381 24 715918

+381 25 712057 fax:

SINGAPORE

PRECISION PRO PTE LTD

126 JOO SENG ROAD #04-04 GOLD PINE INDUSTRIAL BUILDING

SINGAPORE 368355 phone: +65 9754 2917

SINGAPORE

Hock Ann (Sports) PTE Ltd. 273 Beach Road 199548

Singapore

phone: +65 6298 0551 +65 6294 8733

SLOVAKIA

Velkoobchod-Zbrane s.r.o. Zelena 11 949 05 Nitra

phone: +421 37 6512405 +421 37 6512407

SLOVAKIA

Dynax Obchod A Sprosttredkovanie Centrum 12/17 01728 Povazska Bystrica phone: +421 42 4327711

fax: +421 42 4326362

HAMEX D.O.O. S.L. House Stara Vrhnika 161

1360 Vrhnika

SLOVENIA

phone: +386 1 7557770 +386 1 7551530

SOUTH AFRICA

L&O Group SA (Pty.) Ltd. Plot 7 Mountain drive

186 Pretoria phone: +27 7 95015611

SPAIN

GAMO Outdoor, S.L. Ctra. Sta. Creu de Calafell, Km 10 08830 Sant Boi de Llobregat - Barcelona

SPAIN

Chano Shooting C/ Maria de Echarri, 18-20 50018 Zaragoza

phone: +34 93 6400254

phone: +34 976 522684 +34 976 741695

SPAIN

Excopesa Apdo. 428 24080 León

phone: +34 987 215208 +34 987 216922

SRI LANKA

Rifle Point. 4/23. 1st Lane Thalakotuwa Gardens Colombo 5

phone: +94 114 942577 +94 112 512688

TAIWAN

Jen Shuenn Enterprise No.62 Kuang Chou 1-St Street Kaohsiung

phone: +886 7 7227172 +886 7 7232616

TAIWAN

U-Shot Inc

4F, No. 12, Sec. 1, Beisin Rd. 23147 SINDIAN CITY - TAIPEI COUNTY phone: +886 2 29139086

fax: +886 2 29185418

C* TURKEY

TURAC Dis Ticaret Ltd. Sti. Tandogan Meydani Anit Cad. No:4/16 6580 Ankara, Turkey

phone: +90 312 2127061 fax: +90 312 2120533

TURKEY

MEYDAN

Kemeraltı Caddesi Şefkat İş

Merkezi No. 1 Kat. 2 34420 Karaköy-Istanbul phone: +90 212 292 50 16 fax: +90 212 243 93 97

TURKEY

Makina Ve Kimya Endüstrisi 06330 Tandogan Ankara

UKRAINE

Europa Arm Sport LLC 7 Boulevard Druzhby Narodov, off. 106 01042 Kiev

phone: +380 44 529 9522 +380 44 529 7040

USA

UMAREX USA

7700 Chad Colley Boulevard 72916 Fort Smith, AR phone: +1 479 646 4210

USA

Walther Arms Inc. 7700 Chad Collev Boulevard 72916 Fort Smith, AR phone: +1 479 646 4210

USA

GSI - Gun South Inc. 7661 Commerce Lane 35173-2837 Trussville. AL phone: +1 205 655 7500

VIETNAM

GAET

Cong Vi Ward 102 Kim Ma Thuong Street HANOI

DE – Achtung – Gefahr durch Feuer oder Splitter, Spreng- und Wurfstücke. – Von Hitze, heißen Oberflächen, Funken, offenen Flammen sowie anderen Zündquellen fernhalten. Nicht rauchen. ■ EN - Warning - Fire or projection hazard. - Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. ■ BG - Внимание - Опасност от пожар или разпръскване. – Да се пази от топлина, нагорещени повърхности, исхри, открит пламък, и други източници на запалване.
Тютюнопушенето забранено. ■ ES – Alención – Peligro de incendio o de proyección. – Mantener alejado del calor, de superficies calientes, de chispas, de llamas abiertas y de cualquier otra fuente de ignición. No fumar. CS – Varování – Nebezpečí požáru nebo zasažení částicemi. - Chraňte před teplem, horkými povrchy, liskrami, otevřeným ohněm a linými zdroli zapálení. Zákaz kouření. DA – Advarsel – Fare for brand eller udslyngning af fragmenter. – Holdes væk fra varme, varme overflader, gnister, åben ild og andre antændelseskilder. Rvgning forbudt. ET – Hojatus – Süttimis- või lajalipaiskumisoht. – Hojda eemal soojusallikast. kuumadest pindadest, sädemetest, leekidest ja muudest süüteallikatest. Mitte suitsetada. 🚃 EL – Προσοχή – Κίνδυνος πύρκαγιός ή εκτόξευσης. – Μακριά από θερμότητα, θερμές επιφάνειες, σπινθήρες, γυμνές φλόγες και άλλες πηγές ανάφλεξης. Μην καπνίζετε. 🚃 FR - Attention - Danger d'incendie ou de projection. - Tenir à l'écart de la chaleur, des surfaces chaudes, des étincelles, des flammes nues et de toute autre source d'inflammation. Ne pas fumer. 🔤 IT – Attenzione – Pericolo di incendio o di proiezione. – Tenere lontano izmetes bīstamība. – Sargāt no karstuma, karstām virsmām, dzirkstelēm, atklātas uguns un citiem aizdegšanās avotiem. Nesmēķēt. LT – Atsargiai – Gaisro arba išsvaidymo pavojus. – Laikyti atokiau nuo šilumos šaltiniu, karštu paviršiu, žiežirbu, atviros lieosnos arba kitų degimo šaltinių. Nerūkyti. 🚃 HU – Figyelem – Tűz vagy kivetés veszélye. – Hőtől, forró felületektől, szikrától, nyílt lángtól és más gyújlóforrástól távol tartandó. Tilos a dohányzás. 🖿 NL – Waarschuwing – Gevaar voor brand of scherfwerking. – Verwijderd houden van warmte, hete oppervlakken, vonken, open vuur en andere ontstekingsbronnen. Niet roken. 뺕 PL – Uwaga – Zagrożenie pożarem lub rozrzutem. – Przechowywać z dala od źródeł ciepła, gorących powierzchni, źródeł iskrzenia, otwartego ognia i innych źródeł zaplonu. Nie palić. PT – Atenção – Perigo de incêndio ou projecções. – Manter afastado do calor, superfícies quentes, faísca, chama de căldură, suprafete fierbinti, scântei, flăcări și alte surse de aprindere. Fumatul interzis. SK - Pozor - Nebezpečenstvo požiaru alebo rozletenia úlomkov. – Úchovávajte mimo dosahu tepla, horúcich povrchov, iskier, otvoreného ohňa a iných zdrojov zapálenia. Nefaičite. SL - Pozor - Nevarnost za nastanek požara ali drobcev. - Hraniti ločeno od vročine, vročih površin, isker, odprtega ognja in drugih virov vžiga. Kajenje prepovedano. = FI - Varoitus - Palo- tai sirpalevaara. - Suojaa lämmöltä, kuumilta pinnoilta, kipinöiltä, avotulelta ja muilta sykyyslähteiltä. Tupakointi kielletty. 🚥 SV – Vaming – Fara för brand eller splitter och kaststycken. – Fär inte utsättas för värme, heta ytor, gnistor, öppen läga eller andra antändningskällor. Rökning förbjuden. 🚥 CN – 警告 – 赵火或进射 危险。 - 远离热源/火花/明火/热表面。禁止吸烟。 IP - 警告 - 火災又は飛散危険性、- 熱/火花/裸火/高温のもののような着火源か ら遠ざけること。 - 禁煙。 ■ KR - 주의 - 화재 또는 발사 위험 - 열스파크·화염·고열로부터 멀리하시오 - 금연. ■ HR - Upozorenje - Eksplozivno; opasnost od vatre ili rasprskavanja. - Čuvati odvojeno od topline/iskre/otvorenog plamena/vrućih površina. - Ne pušiti. NO - Advarsel - Fare for brann eller utkast av fragmenter. - Holdes vekk fra varme, varme overflater, gnister, åpen ild og andre antenningskilder. Røyking forbudt. === RU – Внимание – Опасность пожара или разбрасывания. – Беречь от тепла/искр/ رزاميم ن آندې ط فحي. – زائت الأوا ق ي رئال رطخ - ريذي – ARAB . مناصم ن ع آندې ط فحي. – زائت الآواقية منال الارش المقار و الله يون ن م لاغش الـ arth – ريذي ن م لاغش الـ العالم المقار الله يون ن م لاغش الـ arth – Dikkat – Yangin veya yansıtım zaran. – Isıdan/ kıvılcımdanlalevdenlsıcak yüzeylerden uzak tutun. – Sigara içilmez. === TH – คำเดือน – อันตรายจากไฟใหม่เหรือสะเกิดระเบิด – เก็บให้หาง จากความร้อน. พื้น: ผิวทีโร้อน / เปลวไฟ /ประกายไฟ /หามสุบบุหรื

© 2019 RUAG Ammotec GmbH

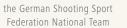
In accordance with the Weapons Act of the Federal Republic of Germany, purchase records must be kept and permission to purchase is required for many products in this catalogue. Products for which no records must be kept and/or for which no permission to purchase is required by law are marked accordingly.

We reserve the right to make technical alterations to the products illustrated or described without giving prior notice.

The complete range of products is not available in every country!

Although the information contained in this brochure is correct to the best of our knowledge, we cannot accept liability for any errors or inaccuracies. We reserve the right to discontinue or modify any product at any time without giving prior notice. Delivery of the products depicted may be subject to legal restrictions.

All rights to photocopies and to the reprinting of excerpts are to be granted solely with the written permission of RUAG Ammotec GmbH.


RWS is a partner and sponsor of

Federation

Dealer stamp

